木本饲料在猪生产中的饲用价值及其抗营养因子的处理技术
石鸿辉1,2,3, 廖嘉明1, 李悦1, 郭霖1, 王成1,2,3, 彭钟通1, 周玮1,2,3, 张庆1,2,3, 陈晓阳1,2,3
1.华南农业大学林学与风景园林学院,广东 广州 510642
2.广东省现代农业(木本饲料)产业技术研发中心,广东 广州510642
3.广东省木本饲料工程技术研发中心,广东 广州 510642
通讯作者:陈晓阳(1958-),男,四川南充人,教授,博士,主要从事林木遗传育种、森林植物资源开发利用。E-mail:xychen@scau.edu.cn

第一作者:石鸿辉(1993-),男,安徽黄山人,在读硕士生,从事动物营养与饲料资源开发研究。E-mail:973435397@qq.com

摘要

木本饲料一般指可供饲用的木本植物的叶子、嫩芽、籽实及加工后产生的木屑和刨花等副产品。作为一种有待开发的新型蛋白原料,本文总结了木本植物诸如辣木( Moringa oleifera)、桑树( Morus alba)、构树( Broussonetia papyrifera)等的营养价值和抗营养因子含量,以及在猪生产中的应用进展,并对当前抗营养因子的处理方式做了进一步的归纳和阐述。1)木本饲料的蛋白含量较高,矿物质和维生素含量丰富;2)抗营养因子中单宁、植酸、皂苷含量较高,其他如胰蛋白酶抑制因子、氰化物等含量较低;3)木本饲料在猪生产上的饲用进展;4)目前,降低抗营养因子的主要途径有物理、化学以及生物发酵的方法。以上综述可为将来合理开发木本饲料进行养猪生产提供一定的参考。

关键词: 木本饲料; 营养价值; 抗营养因子; 猪生产
中图分类号:S816.15 文献标志码:A 文章编号:1001-0629(2018)06-1556-12
Feeding value of woody forage in pig production and treatment technology of anti-nutritional factors
Shi Hong-hui1,2,3, Liao Jia-ming1, Li Yue1, Guo Lin1, Wang Cheng1,2,3, Peng Zhong-tong1, Zhou Wei1,2,3, Zhang Qing1,2,3, Chen Xiao-yang1,2,3
1.College of Forestry and Landscape Architectural,South China Agricultural University,Guangzhou 510642, Guangdong, China
2.Guangdong Province Research Center of Modern Agriculture(Woody Forage) Industry Technology, Guangzhou 510642,Guangdong, China
3.Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou 510642, Guangdong, China
Corresponding author: Chen Xiao-yang E-mail:xychen@scau.edu.cn
Abstract

Woody forage generally refers to the leaves, buds, and seeds of woody plants for feeding and processed wood, sawdust, shavings and other by-products. As this constitutes a novel protein raw material to be exploited, this article summarizes the nutritional value and anti-nutritional factors of woody plants including Moringa oleifera, Morus alba, Broussonetia papyrifera. Furthermore, progress in the application of pig production and current anti-nutritional factors are discussed. Woody forage has a high protein content and is rich in minerals and vitamins. Anti-nutritional factors, such as tannins, phytic acid, and saponin are higher, while the levels of other compounds including trypsin inhibitor and cyanide are lower. Concerning the use of woody forage as feed in pig production, the main ways to reduce anti-nutritional factors are physical, chemical, and biological fermentation methods. The article aims to provide reference data for the rational development and utilization of woody forage for pig production.

Key words: woody forage; nutritional value; anti-nutritional factor; pig production

近年来, 随着人均收入的增加、生活水平的提高及人口的增长, 畜牧业将会在未来几十年成为农业领域内最具活力的行业[1]。截止到2016年, 畜牧业的生产产值约占全球农业产值的40%, 畜牧业生产不仅能解决几十亿人口的粮食安全问题, 还能为农民和各种经营者提供新的就业机会。据相关报道, 规模化及现代化的养殖技术分别为全球提供了近55%的猪肉和71%的禽肉产量[2, 3], 该数值的持续增长将产生对饲料资源的巨大需求。饲料资源在发展中国家较为紧缺, 尤其是蛋白饲料资源。我国的土地资源短缺, 农业用地较少, 发展畜牧业将会占用一部分的耕地面积, “ 人畜共争粮” 的矛盾可能会愈演愈烈。而且最近几年的气候变化恶劣, 环境污染严重, 国际市场原料价格的不断上涨, 中小型饲料企业的生存与发展面临多方面的挑战, 更不必说小农养殖户。因此, 寻找一种能够替代常规饲料资源的新型蛋白饲料资源迫在眉睫。

国内外的学者一直致力于开发新型的蛋白原料资源。其中, 昆虫粉、海藻、单细胞蛋白、木本饲料等都具有一定的潜力成为饲料补充到猪日粮中。昆虫粉的粗蛋白含量较高, 在42%和63%之间变化, 而且适口性好。但几乎所有的昆虫粉用于猪日粮中都需要补充赖氨酸和色氨酸[4], 而且在猪生产上的需求量大, 这在一定程度上会限制昆虫粉的加工生产。海藻也是良好的蛋白和矿物质原料, 干物质中的糖类含量最高, 其次是蛋白质。海藻饲料具有一种作为改善动物机体免疫性能添加剂的潜力, 而不作为主要的饲料原料。例如, Heima等[5]研究发现, 母猪日粮中补充海带多糖能改善8日龄断奶仔猪的肠道结构和免疫能力, 而岩藻多糖具有促炎作用。另一方面, 断奶仔猪日粮中添加海带多糖能显著降低粪便中致病性大肠杆菌的数量, 配合岩藻多糖一起补充, 预防仔猪腹泻的效果更佳[6]。此外, 农工副产品诸如木薯(Manihot esculenta)、蔬菜及水果加工废物等通过细菌、真菌和酵母发酵后产生的单细胞蛋白[7]也可被开发为饲料。Aggelopoulos等[8]分别利用酿酒酵母和马克斯克鲁维酵母发酵食品工业中产生的废弃物, 发现后者能够产生更多的粗蛋白(33.7%)和脂肪(25.5%)。单细胞蛋白的安全问题一直受到人们关注, 未来需要制定更严格安全的使用规范, 才能合理投入市场。相对于以上几种新型蛋白饲料的劣势, 木本饲料安全自然、栽培简单、产量大、成本低、营养价值高。过去几年, 人们认为饲料树和灌木饲料是发展可持续畜牧生产的热点之一[9]。本文主要介绍一些国内常见的木本饲料的营养价值和存在的抗营养因子含量, 以及在猪生产中的研究进展, 旨在为将来合理开发木本饲料进行养猪生产提供一定的参考价值。

1 木本饲料的营养价值

木本饲料指“ 可供饲用的木本植物的叶子、嫩芽、籽实及加工后产生的木屑和刨花等副产品[10]” 。总体上, 我国南方的木本植物资源丰富。李茂等[11]测定了20种热带地区的木本植物的营养成分, 发现这些植物普遍具有高蛋白、高脂肪、消化性好等优点, 称得上优质的蛋白原料。这与Kambashi等[12]的研究结果几乎一致, 旨在更好地指导将其应用在养猪生产上。另外, 大力开发木本植物, 除了饲用价值高, 还有很多其他重要的功能用途。比如, 紫穗槐(Amorpha fruticosa)、柠条(Caragana korshinskii)、胡枝子(Lespedeza bicolor)等不仅可以保持水土, 涵养水源, 而且能够改良土壤肥力, 治理土壤污染。而桑树(Morus alba)、辣木(Moringa oleifera)和构树(Broussonetia papyrifera)等具有重要的药用功效, 提取的活性物质能够降糖降脂, 消炎抗肿瘤。现今, 适合国内大力开发利用的木本植物主要有辣木、桑树、构树、银合欢(Leucaena leucocephalade)等。它们的蛋白含量高, 蛋白消化率也较高, 氨基酸组成合理, 矿物质和维生素含量也非常丰富。

辣木属于辣木科(Moringaceae)辣木属, 是多年生热带落叶乔木, 原产于印度北部, Moyo等[13]测定了南非地区的辣木叶粉, 粗蛋白含量高达30.3%, 其他研究结果也表明, 辣木叶的粗蛋白含量一般会在16%、22.42%、23.27%、27.4%左右(干物质基础, 下同)[14, 15, 16, 17]。而桑树和构树都属于桑科(Moraceae)的落叶乔木, 在中国分布广泛, 桑叶的粗蛋白含量高达29.8%[18], 其他品种的树叶粉, 粗蛋白含量几乎都在20%以上, 屠焰等[19]测定了杂交构树叶的营养成分, 粗蛋白含量为26.1%, 较苜蓿(Medicago sativa)草粉高出6.7%, 说明杂交构树叶的营养价值也较高。据报道, 大部分牧草和灌木叶粉的粗蛋白含量很少超过15%[20]。另有研究测定, 辣木叶的蛋白体外消化率高达79.2%[21], 桑叶的干物质体外消化率高达89.9%[22], 桑叶的体内干物质消化率也在75%~85%[23]。因此, 将桑叶、辣木叶, 乃至构树叶应用到猪日粮中具有较高的可行性。

另外, 木本饲料的蛋白含量与氨基酸组成密切相关。Sanchez-Machado等[27]和Fodil等[28]分别报道过辣木叶粉中含有16 个和18 个氨基酸。而Moyo等[13]报道了辣木叶粉中的19 个氨基酸(表1)。与桑叶粉及构树叶粉的氨基酸组成(表1)相比, 多了一个羟脯氨酸。羟脯氨酸是胶原蛋白的主要成分, 在维持胶原蛋白稳定性中起重要作用。另外, 赖氨酸和蛋氨酸作为植物第一限制性和第二限制性氨基酸备受人们关注, 辣木叶粉、桑叶粉、构树叶粉以及银合欢叶粉的赖氨酸和蛋氨酸皆处于豆粕和苜蓿草粉之间。辣木叶粉中含量最高的氨基酸是丙氨酸, 占氨基酸总量的3.033%, 半胱氨酸含量偏低, 研究表明, 蛋氨酸和半胱氨酸是强有力的抗氧化剂, 能够降低有害物质的毒性和保护自身免受辐射影响[29]。桑叶中含量最高的则是谷氨酸和天冬氨酸, 而相对于苜蓿草粉而言, 构树叶除酪氨酸和色氨酸外, 其他氨基酸含量都比较高。银合欢叶粉中除了色氨酸未能检测到, 其余氨基酸含量也相对丰富。而氨基酸一般被分为必需和非必需氨基酸, 根据动物种类和生产体系的不同而有所变化[9]。这4 种木本植物中, 桑叶的必需氨基酸含量最高, 并且它们都高于苜蓿草粉中含有的必需氨基酸含量。

表1 木本饲料的氨基酸组成 Table 1 Amino acids composition of woody forage %

辣木、银合欢、南洋樱(Jatropha pandurifolia)及桑树这些木本植物的叶粉具有丰富的矿物质含量, 其中, 辣木叶粉中的铁(Fe)和钙(Ca)元素含量相对较高, Fe元素318.81 mg· kg-1, Ca元素占2.47%(表2)。其他研究也同样报道过, 辣木叶片中Fe和Ca含量分别为379.83[31]和18 747.14 mg·kg-1[32]。除此之外, 维生素含量也非常丰富, 类胡萝卜素平均含量为401.39 mg· kg-1, 其中β -胡萝卜素约占47.8%[33], 而β -胡萝卜素在进入人体后可以转变为维生素A, 全世界约有20 亿人, 特别是发展中国家的人群, 身体中维生素A和Fe元素的营养含量严重不足[34]。同样, 桑叶粉也存在高含量的矿物质和维生素, 而桑叶中的矿物质以Ca、K最多, 维生素以维生素B和维生素C较高[35]。Ca是骨骼和牙齿的主要成分, 可以预防骨质疏松症, 也具有凝血和神经调节功能。而Fe是运输氧和细胞生长分裂过程中血红蛋白和肌红蛋白的必需组分, Fe在能量代谢中也起关键作用, 它有助于电子传递链中的电子转移从而形成三磷酸腺苷(ATP)[36]。Fe还是维持中枢神经系统正常工作和脂肪氧化过程中的重要微量元素[37]。这些植物的矿物质含量和维生素含量较高有利于增强动物机体免疫力, 促进营养物质消化吸收, 生产中可以充分利用这些叶粉与其他原料搭配, 减少微量元素或者维生素添加剂的使用用量, 节省成本。

表2 木本饲料的矿物质含量 Table 2 Mineral contents of woody forage

此外, 辣木叶和桑叶都含有丰富的脂肪酸含量, 其中饱和脂肪酸含量低而不饱和脂肪酸含量很高。有研究报道, 辣木叶脂肪酸中α -亚麻酸的比例高达56.87%[27]。饱和脂肪酸能够显著降低患冠心病的几率[38], Wood等[39]认为α -亚麻酸消耗越多越能促进长链n-3多不饱和脂肪酸的内源性合成, 而多不饱和脂肪酸具有降低胆固醇的作用, 而且被认为是细胞生长和发育所需要的重要调节剂[40], 它们与免疫系统的形成和功能息息相关。再者, 辣木叶、桑叶以及构树叶还具有多种天然活性物质, 比如黄酮类、γ -氨基酸、多糖类、挥发油、槲皮素、甾醇等。汪雁等[41]优化了一种离子液体超声辅助提取构树叶总黄酮含量的工艺参数, 构树叶中的总黄酮提取率为0.047%。而吉莉莉[42]从辣木叶黄酮中分离纯化出具有降低血糖作用的异槲皮苷, 含量可达41.42%。赵翔等[43]利用响应面试验设计优化酶法提取桑叶中1-脱氧野尻霉素, 提取率达0.095%。以1-脱氧野尻霉素为代表的多羟基生物碱作为桑叶中含有的一类降血糖成分备受国内外学者关注[44]。这些天然活性物质不仅可以加快畜禽生长, 改善畜禽肉质, 而且可以作为天然防腐剂, 延长肉类食品的保质期[45]

2 木本饲料的抗营养因子

这些树叶粉的营养价值虽然很高, 但应用到猪生产中还是受到很多限制, 比如纤维含量过高、不易消化、适口性差、毒性和抗营养因子的存在限制动物的生长[46], 采食过多甚至中毒死亡。这些抗营养因子一般不涉及植物细胞增殖和分化的主要化学途径[47]。抗营养因子主要指通过植物的正常代谢在天然饲料成分中产生的并以不同的机制对动物产生相互作用的物质[48]。例如, 一些导致营养失活的物质, 干扰体内消化或代谢过程的物质。实际上, 抗营养作用不是这些物质的自身特征, 而是取决于采食动物的消化过程。根据不同的抗营养作用可以分为抑制蛋白质消化和利用的物质、对能量消化利用起抑制作用的物质、引起动物维生素需要量增加的物质及刺激免疫系统的物质。其中, 蛋白酶抑制因子、植酸、非淀粉多糖、多酚类化合物、植物凝集素等含量或者生物活性较高, 因而对动物起着主要的抗营养作用; 而维生素拮抗物、皂苷等则起着较为次要的作用[49]

蛋白酶抑制因子一般指胰蛋白酶抑制因子和胰凝乳蛋白酶抑制因子, 在自然界中目前已经发现数百种蛋白酶抑制因子, 主要抑制胰蛋白酶、胃蛋白酶和糜蛋白酶的活性, 并且会引起胰腺的肥大和增生[50]。植物凝集素是一种能够凝集动物红细胞的糖蛋白, 影响免疫系统[51], 可以划分为毒性、抑制生长、基本无毒、甚至有益。Makkar[52]报道, 凝集素还可以通过结合小肠壁上皮细胞表面的特异受体, 致使刷状缘黏膜结构破坏, 影响肠道中营养物质的吸收。一般情况下, 凝集素的活性可以通过加热去除。多酚类化合物的存在一般会与味道、气味和颜色相关, 包括单宁、棉酚和芥子碱等。其中, 单宁又称鞣酸, 分为缩合单宁和水解单宁, 缩合单宁作为复杂的热稳定性酚类化合物, 在许多植物中尤为常见, 特别是灌木和豆类, 如南洋樱、相思树和银合欢[53]。它们可与胰蛋白酶和淀粉酶或这些酶的底物起反应, 降低蛋白质和碳水化合物的利用率。另外, 单宁会与Ca、Fe、Zn等金属离子化合物结合形成沉淀, 也会与维生素B12形成络合物从而降低其利用率, 还会与瘤胃细菌酶或者植物细胞壁中碳水化合物结合形成不易消化的复合物, 从而降低纤维素的消化率[54, 55]。Sultana等[56]注意到多酚含量会随着叶龄的增加而增加, 而这些变化可能归因于各地的降水、高温等气候条件的不同。单宁味道苦涩, 适口性很差。饲喂含单宁酸的提取物, 猪具有较低的表观回肠消化率, 但回肠中氮的消化率没有显著下降[57]。缩合单宁通常没有毒性, 水解单宁可导致肝肾损伤, 甚至死亡[52]。不过, 据报道, 单宁也是良好的抗氧化剂, 可以改善耐热性[58]。多酚则具有多种有益的功能特性, 包括抗氧化活性、抗菌抗炎抗肿瘤活性、抑制血小板凝集等[59]。植酸广泛存在于植物中, 尤其在禾谷类籽实的外层中含量最高。已知日粮中的植酸会与消化道中的矿物质如Ca、Fe、Mg、Zn结合, 导致矿物质的缺乏[60]。植酸盐是不溶性盐, 从而降低其生物利用度。而草酸盐通常指的是由草酸和特定矿物质(如Ca、Mg或Na)的化学组合产生的复合物。可溶性草酸盐在家畜体内可能会引起肾结石[61]。辣木叶含有高比例的不饱和草酸盐, 但它们与肾结石的形成无关。皂苷包括甾体皂苷和三萜皂苷[62]。它们是热稳定的, 与水混合会形成肥皂泡, 并会改变细胞壁的通透性, 导致溶血和光敏化[63]。Hauptli和Lovatto[64]报道了皂苷对母猪和仔猪的积极作用, 虽然降低了生长性能, 但是能够减少仔猪死胎数[65]。过量的皂苷会引起胆固醇含量过高[66]

Aye和Adegun[67]测定了辣木叶粉、银合欢叶粉以及南洋樱叶粉中的部分抗营养因子含量(表3), 其中, 植酸是这3种木本植物含量最高的抗营养因子。Richter等[68]测定了尼日尔地区的新鲜辣木叶粉的抗营养成分含量, 以干物质来计, 总酚含量2.7%, 单宁含量0.5%, 植酸含量2.3%, 皂苷含量6.4%, 而没有检测到胰蛋白酶抑制剂活性, 缩合单宁含量也微量不计。这与Ogbe和Affiku[69]的研究几乎相一致, 但他们检测到辣木叶的单宁含量高达21.19%, 胰蛋白酶抑制剂含量也有3.0%, 甚至存在低水平的氰化物。Adeduntan和Oyerinde[70]评估了不同品种桑叶中含有的抗营养因子含量, 植酸含量最高为488.9 mg· kg-1, 氰化物的含量最高值是2.14 mg· kg-1, 而且存在5.32 mg· kg-1的单宁。Srivastava等[71]也做了相似的工作, 确定了6种基因型的桑叶叶片和干叶粉的营养成分和抗营养成分, 其中, 新鲜叶片单宁含量0.04%~0.08%, 干叶粉中却含有0.13%~0.36%的单宁。而构树叶粉中同样含有较高的单宁[72]。其他植物中, 银合欢含有4.5%的单宁, 0.43%的植酸以及2.20%含羞草碱[73]。含羞草碱是一种非蛋白游离氨基酸, 它可以破坏生殖过程, 显示致畸作用, 导致头发和羊毛的丧失甚至死亡[74, 75]。幼龄反刍动物采食超过50%时是致命的[76]

表3 木本饲料的抗营养因子成分 Table 3 Anti-nutritional factors of woody forage
3 木本饲料在猪生产中的饲用进展

木本饲料应用在反刍动物的研究比较多, 但是运用到单胃动物, 尤其猪的研究报道较少。由于饲料是养猪过程中最重要的成本, 因此, 对于小养殖户而言, 选用木本饲料替代一部分昂贵的饲料原料具有重要的意义[77]。目前, 越来越多的学者开始关注将木本饲料应用到猪生产中。比如有研究报道, 摄入300 g· kg-1热带地区的树叶粉不会影响母猪的消化过程, 而且能够提供8.53~12.00 MJ· kg-1的消化能和60~125 g· kg-1可消化蛋白[78]

Nduku等[79]用辣木叶饲喂了大白猪和Kolbroek猪, 发现日粮中添加5%的辣木叶粉, 不会影响猪的生产性能, 而且能够改善猪肉的品质, 尤其是大白猪。与玉米-豆粕对照日粮相比, Bee[80]添加了15%的辣木叶粉, 虽然日粮的营养成分含量相似, 但是辣木叶粉替代豆粕不仅使猪的生长受到抑制, 而且对重要的肉质特征产生负面影响。Valentí n和Luis[81]却发现增加日粮中的辣木叶粉含量能够增加猪肉和皮下脂肪中的不饱和脂肪酸含量。

邝哲师等[82]在基础日粮中添加10%的桑枝叶粉, 饲喂60 kg左右的中大猪50 d, 发现猪肉的品质和风味得到改善, 肌间脂肪含量和大理石花纹增加, 并且不显著影响猪的生产性能。这与宋琼莉等[83]的报道一致, 饲粮中添加10%桑叶粉对育肥猪生长速度影响较小, 却能有效提高肉品质。Araque等[84]建议以甘薯根粉为主要能量来源的育肥猪的日粮中应该添加24%的桑叶粉。Phiny等[85]比较了能量来源如混合木薯根粉和米糠, 或混合棕榈糖糖浆和碎米, 以及蛋白来源如单独饲喂空心菜或混合饲喂空心菜与桑叶之间对猪的生长性能影响, 结果表明, 空心菜添加过量会导致较差的生长性能。可见, 木本饲料的摄入量问题至关重要, 而且由于纤维含量过高, 在猪饲料中加入叶粉会降低日粮能量, 因此, 育肥猪日粮中添加低水平的树叶粉可以在低纤维饮食中改善日粮的蛋白供应。

4 木本饲料的品质改良及其加工技术

目前, 木本植物用作猪饲料最简单的方法是将新鲜叶子晒干后, 粉碎或搓碎按一定比例添加到全价料中, 这种方法对普通养殖户而言非常适用, 但是, 采用这种方法养猪存在一些问题, 比如饲料的适口性差、添加量低甚至叶粉添加过高抑制猪的正常生长等。所以, 只有通过物理、化学或者生物的方法才能改善木本饲料的营养品质, 提高木本饲料的利用率[48]

4.1 物理方法

一般常见的抗营养因子如蛋白酶抑制因子、植物凝集素、皂苷等, 通过热水煮沸是可以减少植物的这些抗营养因子含量[86]。Sallau等[87]比较了煮沸、慢煮以及烫漂3种消除辣木叶抗营养因子的方式, 发现相比于其他两种方法, 煮沸显著降低了辣木叶抗营养因子的水平。随着温度升高, 草酸盐、植酸以及胰蛋白酶抑制因子等可能变性失活, 进而改善了叶的适口性和消化性。同样, 不同的干燥技术也能改善辣木叶的营养品质, Mbah等[88]发现不同的干燥技术处理后, 抗营养因子如植酸盐、草酸盐和皂苷都显著降低, 但是单宁含量反而增加了。Vitti等[89]却报道新鲜叶子干燥处理后可减少了缩合单宁15%~30%。生产上, 浸泡法处理木本饲料也是不错的选择, 不过只对溶于水或者有机溶剂的抗营养因子有效。Chanchay和Poosaran[75]用60 ℃干燥银合欢叶24 h, 然后室温下浸泡72 h, 再在60 ℃干燥48 h, 发现含羞草碱含量从4.4%降低到0.2%, 单宁含量由37.6%降至0.3%。

4.2 化学方法

化学方法指的是在某种条件下, 加入一定量的某种物质, 达到饲料中的抗营养因子失活或者活性降低的目的。有研究报道, 银合欢中含羞草素的含量在3%~5%, 而对于非反刍动物而言, 银合欢的添加量为5%~10%[90]。含羞草碱可溶于甲醇、乙醇或者酸碱溶液中, 温和条件下就能够降解。杨宇衡等[91]将一部分风干银合欢叶粉用4%的尿素溶液氨化处理, 含羞草素降低了47%左右。甚至Adekojo等[92]分别使用了4种方法:风干, 冷水浸泡36 h, 60 ℃热水浸泡24 h以及发酵5 d处理银合欢叶粉, 结果表明, 除了风干外, 其余方法均能降低银合欢的抗营养水平。然而, 化学法造成的化学物质残留带有很大的安全隐患。

4.3 生物方法

生物方法一般指的是使用酶制剂或者发酵法, 或者联合使用。Fuglie[32]认为, 辣木叶的营养价值可以通过添加酶制剂破坏植酸来提高, 而采用单一菌种或者多个菌种协同发酵, 也可以提高植物饲料的蛋白含量和改善营养品质。

Thierry等[93]利用植物乳杆菌发酵辣木叶粉, 植酸含量降低到66.92%, 蛋白消化率提高63.97%, 同时也提高了Fe的可利用性。相比于液态发酵, 用短小芽孢杆菌固态发酵能产生最大量的可溶性蛋白, 而且能发挥内切葡聚糖酶的活性, 分解纤维素[94]。任元元等[95]利用枯草芽孢杆菌、米曲霉、酿酒酵母、植物乳杆菌混合发酵桑叶, 发酵3 d可溶性蛋白含量提高了176.52%。而且复合菌剂发酵桑叶, 桑叶饲料中不仅仅是粗蛋白质的含量提高了, 也有研究表明, 增加了17 种游离氨基酸的含量[96]。董志浩等[97]探讨了添加乳酸菌、葡萄糖或糖蜜对桑叶青贮发酵品质的影响, 单独添加乳酸菌明显提高了桑叶青贮发酵品质, 而其他组合并未进一步改善。而实际上, 抗营养因子并不一定要完全消除。比如, 一方面, 单宁和可水解酚类具有良好的抗氧化功能, 另一方面, 它们的存在干扰着蛋白质和纤维含量的水平[98]。因此, 维持其在日粮中的安全水平才可以放心消费。

5 结语

木本植物作为一种植物性蛋白的来源, 特别对于农村的小规模养殖户而言, 是一种既廉价安全又方便可取的饲料原料。这些植物营养价值高, 生物量大, 即使存在抗营养因子等不利条件, 也可以通过适当的加工方法改善, 具有广阔的应用前景。当前, 木本饲料用于养猪生产的研究报道不是很多, 未来的研究重点可以是开发更多的木本植物资源, 以及探索新的饲料加工工艺降低抗营养因子含量, 在养猪生产中提供更有价值的参考。

The authors have declared that no competing interests exist.

参考文献
[1] Gupta K, Barat G K, Wagle D S, Chawla H K L. Nutrient contents and antinutritional factors in conventional and non-conventional leafy vegetables. Food Chemistry, 1989, 31(2): 105-116. [本文引用:1]
[2] Harinder P, Makkar S . 全球新蛋白及能量原料的开发(待续). 中国饲料, 2017(4): 40-44.
Harinder P, Makkar S. Exploitation of new protein and energy feed material in the world (be continued). China Feed, 2017(4): 40-44. (in Chinese) [本文引用:1]
[3] Harinder P, Makkar S . 全球新蛋白及能量原料的开发(续). 中国饲料, 2017(5): 41-45.
Harinder P, Makkar S. Exploitation of new protein and enery feed material in the world(continue). China Feed, 2017(5): 41-45. (in Chinese) [本文引用:1]
[4] Makkar H P S, Tran G, Heuzé V, Ankers P. State-of-the-art on use of insects as animal feed. Animal Feed Science & Technology, 2014, 197: 1-33. [本文引用:1]
[5] Heim G, Sweeney T, O’Shea C J, Doyle D N, O’doherty J V. Effect of maternal dietary supplementation of laminarin and fucoidan, independently or in combination, on pig growth performance and aspects of intestinal health. Animal Feed Science & Technology, 2015, 204: 28-41. [本文引用:1]
[6] Mcdonnell P, Figat S, O’Doherty J V. The effect of dietary laminarin and fucoidan in the diet of the weanling piglet on performance, selected faecal microbial populations and volatile fatty acid concentrations. Animal an International Journal of Animal Bioscience, 2010, 4(4): 579-585. [本文引用:1]
[7] Anupama, Ravindra P. Value-added food: Single cell protein. Biotechnology Advances, 2000, 18(6): 459-479. [本文引用:1]
[8] Aggelopoulos T, Katsieris K, Bekatorou A, Pand eyA, Banat I M, Koutinas A A. Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chemistry, 2014, 145: 710-716. [本文引用:1]
[9] Asaolu V O, Binuomote R, Akinlade J A, Oyelami O S, Kolapo K O. Utilization of Moringa oleifera fodder combinations with Leucaena leucocephala, and Gliricidia sepium fodders by West African dwarf goats. International Journal of Agricultural Research, 2011, 6: 607-619. [本文引用:2]
[10] 郭志芬. 我国南方重要的木本饲料资源及其综合利用. 资源科学, 1989(4): 9-15.
Guo Z F. The Important woody feed resources and their comprehensive utilization in Southern China. Resources Science, 1989(4): 9-15. (in Chinese) [本文引用:1]
[11] 李茂, 字学娟, 周汉林, 侯冠彧. 二十种热带木本饲料的营养价值研究. 家畜生态学报, 2013, 34(7): 30-34.
Li M, Zi X J, Zhou H L, Hou G Y. Study on nutrition value of twenty tropical woody forage species. Journal of Domestic Animal Ecology, 2013, 34(7): 30-34. (in Chinese) [本文引用:1]
[12] Kambashi B, Picron P, Boudry C, Thewis A, Kiatoko H, Bindelle J. Nutritive value of tropical forage plants fed to pigs in the Western provinces of the Democratic Republic of the Congo. Animal Feed Science & Technology, 2014, 191(5): 47-56. [本文引用:1]
[13] Moyo B, Masika P J, Hugo A, Muchenje V. Nutritional characterization of Moringa ( Moringa oleifera Lam. ) leaves. African Journal of Biotechnology, 2011, 10(60): 12925-12933. [本文引用:2]
[14] Gidamis A B, Panga J T, Sarwatt S V, Chove B E, Shayo N B. Nutrients and anti-nutrient contents in raw and cooked leaves and mature pods of Moringa oleifera Lam. Ecology of Food and Nutrition, 2003, 42: 399-411. [本文引用:1]
[15] Sarwatt S V, Milang’ha M S, Lekule F P, Madalla N. Moringa oleifera and cottonseed cake as supplements for smallholder dairy cows fed Napier grass. Livestock Research for Rural Development, 2004, 16(6): 12-18. [本文引用:1]
[16] Nouala F S, Akinbamijo O O, Adewumi A, Hoffman E, Muetzel S, Becker K. The influence of Moringa oleifera leaves as substitute to conventional concentrate on the in vitro gas production and digestibility of groundnut hay. Livestock Research for Rural Development, 2006, 18(9): 121. [本文引用:1]
[17] Owusu D, Ellis W O, Oduro I. Nutritional potential of two leafy vegetables: Moringa oleifera and Ipomoea batatas leaves. Scientific Research & Essays, 2008, 3(2): 57-60. [本文引用:1]
[18] Al-Kirshi R A, Alimon A, Zulkifli I, Atefeh S, Zahari M W, Ivan M. Nutrient digestibility of mulberry leaves ( Morus alba). Italian Journal of Animal Science, 2013, 12(2): 381-388. [本文引用:1]
[19] 屠焰, 刁其玉, 张蓉, 闫贵龙, 熊伟. 杂交构树叶的饲用营养价值分析. 草业科学, 2009, 26(6): 136-139.
Tu Y, Diao Q Y, Zhang R, Yan G L, Xiong W. Analysis on the feed nutritive value of hybrid Broussonetia papyrifera leaf. Pratacultural Science, 2009, 26(6): 136-139. (in Chinese) [本文引用:1]
[20] Ayssiwede S B, Chrysostome C, Ossebi W, Dieng A, Hornick J L, Missohou A. Digestibility and metabolic utilisation and nutritional value of Cassia tora (Linn. ) leaves meal incorporated in the diets of indigenous Senegal chickens. International Journal of Poultry Science, 2010, 9(8): 767-776. [本文引用:1]
[21] Ly J, Samkol P, Preston T R. Nutritional evaluation of tropical leaves for pigs: Pepsin/pancreatin digestibility of thirteen plant species. Livestock Research for Rural Development, 2001, 13(5): 1-6. [本文引用:1]
[22] Kand ylis K, Hadjigeorgiou I, Harizanis P. The nutritive value of mulberry leaves ( Morus alba) as a feed supplement for sheep. Tropical Animal Health & Production, 2009, 41(1): 17. [本文引用:1]
[23] Nguyen X B, Vu D G, Le D N. Ensiling of mulberry foliage ( Morus alba) and the nutritive value of mulberry foliage silage for goats in central Vietnam. Livestock Research for Rural Development, 2005, 17(2): 1-9. [本文引用:1]
[24] Al-Kirshi R A, Alimon A R, Zulkifli I, Zahari M W, Sazili A Q. The chemical composition and nutritive value of mulberry leaf as a protein source in poultry diets. ∥Proceedings of The 1st International Seminar on Animal Industry. Bogor, Indoesia: Bogor Agricultural University, 2009: 98-102. [本文引用:1]
[25] Mutayoba S K, Dierenfeld E, Mercedes V A, Frances Y, Knight C D. Determination of chemical composition and ant-nutritive components for Tanzanian locally available poultry feed ingredients. International Journal of Poultry Science, 2011, 10(5): 752. [本文引用:1]
[26] 中国饲料编辑部. 中国饲料成分及营养价值表. 中国饲料, 2010 (21): 34-39.
China Feed Editor Office. Tables of feed composition and nutritive values in China. China Feed, 2010(21): 34-39. (in Chinese) [本文引用:1]
[27] Sánchez-Machado D I, Núñez-Gastélum J A, Reyes-Moreno C, Ramírez-Wong B, López-Cervantes J. Nutritional quality of edible parts of Moringa oleifera. Food Analytical Methods, 2010, 3(3): 175-180. [本文引用:2]
[28] Foidl N, Makkar H P S, Becker K. The potential of Moringa oleifera for agricultural and industrial uses. ∥What development potential for Moringa products?Dar es Salaam, Tanzania: International Workshop What development potential for Moringa Products, 2001: 45-67. [本文引用:1]
[29] Brisibe E A, Umoren U E, Brisibe F, Magalhaes P M, Ferreira J F S, Luthria D, Wu X, Prior R L. Nutritional characterisation and antioxidant capacity of different tissues of Artemisia annua L. Food chemistry, 2009, 115(4): 1240-1246. [本文引用:1]
[30] Leterme P, Londono A M, Estrada F, Souffrant W B, Buldgen A. Chemical composition, nutritive value and voluntary intake of tropical tree foliage and cocoyam in pigs. Journal of the Science of Food & Agriculture, 2005, 85(10): 1725-1732. [本文引用:1]
[31] Hps M, Becker K. Nutrients and antiquality factors in different morphological parts of the Moringa oleifera tree. Journal of Agricultural Science, 1997, 128: 311-322. [本文引用:1]
[32] Fuglie L J. The Miracle Tree: Moringa oleifera, Natural Nutrition for the Tropics. Dakar: Church World Service, 1999: 68. [本文引用:1]
[33] Seshadri S, Nambiar V S. Kanjero ( Digera arvensis) and drumstick leaves ( Moringa oleifera): Nutrient profile and potential for human consumption. World Review of Nutrition and Dietetics, 2003, 91: 41-59. [本文引用:1]
[34] Rweyemamu L M P. Challenges in the development of micronutrient-rich food ingredients from soya beans and Moringa oleifera leaves. ∥Proceedings on Moringa and Other Highly Nutritious Plant Resources: Strategies, Stand ards and Markets for a Better Impact on Nutrition in Africa. Accra, Ghana: Workshop on Moringa and Other Highly Nutritious Plant Resources: Strategies, Stand ards and Markets for a Better Impact on Nutrition in Africa, 2006: 37-40. [本文引用:1]
[35] 孟留伟, 周逸斌, 黄凌霞. 桑叶的饲用价值及其在动物生产中的应用和研究现状. 蚕桑通报, 2016, 47(3): 11-16.
Meng L W, Zhou Y B, Huang L X. Feeding value of mulberry leaves and current status of research and application in animal production. Bulletin of Sericulture, 2016, 47(3): 11-16. (in Chinese) [本文引用:1]
[36] Kozat S. Serum T3 and T4 concentrations in lambs with nutritional myodegeneration. Journal of Veterinary Internal Medicine, 2007, 21(5): 1135. [本文引用:1]
[37] Umar K J, Hassan L G, Dangoggo S M, Inuwa M, Amustapha M N. Nutritional content of Melochia corchorifolia (Linn. ) leaves. International Journal of Biological Chemistry, 2007, 1(4): 250-255. [本文引用:1]
[38] Abdulkarim S M, Long K, Lai O M, Muhammad S K S, Ghazali H M. Frying quality and stability of high-oleic Moringa oleifera seed oil in comparison with other vegetable oils. Food Chemistry, 2007, 105(4): 1382-1389. [本文引用:1]
[39] Wood J D, Enser M, Fisher A V, Nute G R, Sheard P R, Richardson R I, Whittington F M. Fat deposition, fatty acid composition and meat quality: A review. Meat Science, 2008, 78(4): 343. [本文引用:1]
[40] Khotimchenko S V. Lipids from the marine alga Gracilaria verrucosa. Chemistry of Natural Compounds, 2005, 41(3): 285-288. [本文引用:1]
[41] 汪雁, 金光明, 钱立生, 郭斌, 周圆圆. 离子液体提取构树叶总黄酮的工艺. 化工进展, 2016, 35(b11): 328-331.
Wang Y, Jin G M, Qian L S, Guo B, Zhou Y Y. Study on the ionic liquids-based extraction technology of total flavonoids from Broussonetia papyrifera leaves. Chemical Industry and Engineering Progress, 2016, 35(b11): 328-331. (in Chinese) [本文引用:1]
[42] 吉莉莉. 辣木叶黄酮提取分离纯化及其主要成分异槲皮苷降血糖活性与机理研究. 雅安: 四川农业大学博士学位论文, 2015.
Ji L L. Study on extraction, separation and purification of flavones from Moringa oleifera leaves and characterize the mechanisms of its main compopnents isoquercitrin in promoting glucose metabolisms. PhD Thesis. Ya’an: Sichuan Agricultural University, 2015. (in Chinese) [本文引用:1]
[43] 赵翔, 季更生, 李强, 曹喜涛, 张大钊, 闵文莉, 张伟. 应用响应面试验设计优化酶法提取桑叶中1-脱氧野尻霉素的工艺条件. 蚕业科学, 2017(2): 311-317.
Zhao X, Ji G S, Li Q, Cao X T, Zhang D Z, Min W L, Zhang W. Process optomization for enzyme-assisted extraction of 1-deoxynojirimycin from mulberry leaves using response surface methodology. Science of Sericulture, 2017(2): 311-317. (in Chinese) [本文引用:1]
[44] 邓超, 吴昭全, 刘芳, 曾光尧, 周应军 . 1-脱氧野尻霉素及其衍生物生物活性研究进展. 中国药学杂志, 2017(13): 1110-1114
Deng C, Wu Z Q, Liu F, Zeng G R, Zhou Y J. Progress in research on physiological activity of 1-deoxynojirimycin and its derivatives. Chinese Pharmaceutical Journal, 2017(13): 1110-1114. (in Chinese) [本文引用:1]
[45] Singh T P, Singh P, Kumar P. Drumstick ( Moringa Oleifera) as a food additive in livestock products. Journal of Food Science & Nutrition, 2015, 45(3): 423-432. [本文引用:1]
[46] Akinbamijo O O, Adediran S A, Nouala S, Seeker J. Moringa fodder in ruminant nutrition in the Gambia. (2008-02-19)[2017-05-16]http:∥www.moringanews.org/documents/Fodder.doc. [本文引用:1]
[47] Makkar H P S, Siddhuraju P, Becker K. Plant Secondary Metabolites. USA: Humana Press, 2007. [本文引用:1]
[48] Aganga A A, Tshwenyane S O. Feeding values and anti-nutritive factors of forage treeLegumes. Pakistan Journal of Nutrition, 2003, 2(3): 170-177. [本文引用:2]
[49] 陈吉红. 抗营养因子的抗营养作用及消除. 兽药与饲料添加剂, 2004, 9(1): 21-23.
Chen J H. Anti-nutritional effects of anti-nutritional factors and their elimination. Veterinary Pharmaceuticals & Feed Additives, 2004, 9(1): 21-23. (in Chinese) [本文引用:1]
[50] więch E, Buraczewska L, Taciak M. The effect of trypsin inhibitor level in soy products on in vitro and in vivo (pigs and rats) protein and amino acid digestibility. ∥Recent Advances of Research in Antinutritional Factors in Legume Seeds and Oilseeds. Toledo, Spain: The Fourth International Workshop on Antinutritional Factors in Legume Seeds and Oilseeds, 2004: 247-250. [本文引用:1]
[51] Meite A, Kouame K G, Kati-Coulibaly S. Lectines: Substances antinutritionnelles. Medecine Et Nutrition, 2006, 42(4): 179-187. [本文引用:1]
[52] Makkar H P S. Plant secondary metabolites as antinutrients in monogastric nutrition. ∥Leterme P, Buldgen A, Murgueition E, Cuartas C. (eds). Fodder Banks for Sustainable Pig Production Systems. Cali, Colombia: CIPAV Publication, 2007: 67-85. [本文引用:2]
[53] Martens S D, Tiemann T T, Bindelle J, Peters M, Lascano C E. Alternative plant protein sources for pigs and chickens in the tropics-nutritional value and constraints: A review. Journal of Agriculture and Rural Development in the Tropics and Subtropics (JARTS), 2013, 113(2): 101-123. [本文引用:1]
[54] Jeroch H, Mueller A. Dietary enzymes in poultry nutrition. Lohmann Information International, 1992, 4: 5-11. [本文引用:1]
[55] McSweeney C S, Palmer B, McNeill D M, Krause D O. Microbial interactions with tannins: Nutritional consequences for ruminants. Animal Feed Science & Technology, 2001, 91(2): 83-93. [本文引用:1]
[56] Sultana N, Alimon A R, Haque K S, Sazili A Q, Yaakub H, Hossain S J. The effect of cutting interval on yield and nutrient composition of different plant fractions of Moringa oleifera tree. Journal of Food Agriculture & Environment, 2014, 12(2): 599-604. [本文引用:1]
[57] Steendam C A, de Jong E J, Matuzzi S, Visser G H. Comparison of three methods for the measurement of the endogenous N-flow at the terminal ileum of pigs, as affected by dietary tannin-rich quebracho-extract. European Association for Animal Production, 1999, 93: 335-340. [本文引用:1]
[58] Luis E S, Capitan S S. Nutrient composition and nutritional value of cowpea ( Vigna unguiculata L. Walp) bean meal in broilers starter diets. Philippine Journal of Veterinary & Animal Sciences, 194, 19(3): 103-109. [本文引用:1]
[59] Thurber M D, Fahey J W. Adoption of Moringa oleifera to combat under-nutrition viewed through the lens of the “Diffusion of Innovations” theory. Ecology of Food and Nutrition, 2009, 48(3): 212-225. [本文引用:1]
[60] Bello M O, Falade O S, Adewusi S R A, Olawore N O. Studies on the chemical compositions and anti nutrients of some lesser known Nigeria fruits. African Journal of Biotechnology, 2008, 7(21): 3972-3979. [本文引用:1]
[61] Noreen N, Shah H, Anjum F, Masood T, Faisal S. Variation in mineral composition and phytic acid content in different rice varieties during home traditional cooking processes. Pakistan Journal of Life & Social Sciences, 2009, 7: 11-15. [本文引用:1]
[62] Dei H K, Rose S P, Mackenzie A M. Shea nut ( Vitellaria paradoxa) meal as a feed ingredient for poultry. World’s Poultry Science Journal, 2007, 63(4): 611-624 [本文引用:1]
[63] Brum K B, Haraguchi M, Garutti M B, Nóbrega F N, Rosa B, Fioravanti M C S. Steroidal saponin concentrations in Brachiaria decumbens and B. brizantha at different developmental stages. Ciência Rural, 2009, 39(1): 279-281. [本文引用:1]
[64] Hauptli L, Lovatto P A. Feeding sows in gestation and lactation with diets containing saponins. Ciencia Rural, 2006, 36(2): 610-616. [本文引用:1]
[65] Ilsley S E, Miller H M. Effect of dietary supplementation of sows with Quillaja saponins during gestation on colostrum composition and performance of piglets suckled. Physica Status Solidi, 2005, 207(80): 179-184. [本文引用:1]
[66] Soetan K O, Oyewole O E. The need for adequate processing to reduce the anti-nutritional factors in plants used as human foods and animal feeds: A review. African Journal of Food Science, 2009, 3: 223-232. [本文引用:1]
[67] Aye P A, Adegun M K. Chemical composition and some functional properties of Moringa, Leucaena and Gliricidia leaf meals. Agriculture and Biology Journal of North America, 2013, 4(1): 71-77. [本文引用:1]
[68] Richter N, Siddhuraju P, Becker K. Evaluation of nutritional quality of moringa( Moringa oleifera Lam. )leaves as an alternative protein source for Nile tilapia ( Oreochromis niloticus L. ). Aquaculture, 2003, 217(1): 599-611. [本文引用:1]
[69] Ogbe A O, Affiku J P. Proximate study, mineral and anti-nutrient composition of Moringa oleifera leaves harvested from Lafia, Nigeria: Potential benefits in poultry nutrition and health. Journal of Microbiology Biotechnology & Food Sciences, 2011, 1(3): 296-308. [本文引用:1]
[70] Adeduntan S A, Oyerinde A S. Evaluation of chemical and antinutritional characteristics of obeche( Triplochition scleroxylon) and some mulberry( Morus alba)leaves. International Journal of Biological & Chemical Sciences, 2009, 3(4): 681-687. [本文引用:1]
[71] Srivastava S, Kapoor R, Thathola A, Srivastava R P. Nutritional quality of leaves of some genotypes of mulberry ( Morus alba). International Journal of Food Sciences & Nutrition, 2006, 57(5-6): 305. [本文引用:1]
[72] 于明, 刘素杰, 程波, 曲强. 构树叶的营养成分分析及与刺槐树叶的营养比较. 辽宁农业职业技术学院学报, 2012, 14(4): 15-16.
Yu M, Liu S J, Cheng B, Qu Q. Comparison of nutrition nutrition analysis of Broussonetia papyrifera and Robinia pseudoacacia leaves. Journal of Liaoning Agricultural Technical College, 2012, 14(4): 15-16. (in Chinese) [本文引用:1]
[73] Bairagi A, Sarkar Ghosh K, Sen S K, Ray A K. Evaluation of the nutritive value of Leucaena leucocephala leaf meal, inoculated with fish intestinal bacteria Bacillus subtilis and Bacillus circulans in formulated diets for rohu, Labeo rohita(Hamilton) fingerlings. Aquaculture Research, 2015, 35(5): 436-446. [本文引用:1]
[74] Hegarty M P, Court R D, Christie G S, Lee C P. Mimosine in Leucaena leucocephala is metabolised to a goitrogen in ruminants. Australian Veterinary Journal, 1976, 52(10): 490. [本文引用:1]
[75] Chanchay N, Poosaran N. The reduction of mimosine and tannin contents in leaves of Leucaena leucocephala. Asian Journal of Food and Agro-Industry, 2009(Special Issue): 137-144. [本文引用:2]
[76] Wong C C, Sharudin M. Forage productivity of three fodder shrubs in Malaysia. MARDI Research Bulletin, 1986, 14(2): 178-188. [本文引用:1]
[77] Kaensombath L, Neil M, Lindberg J E. Effect of replacing soybean protein with protein from ensiled stylo( Stylosanthes guianensis(Aubl. )Sw. var. guianensis) on growth performance, carcass traits and organ weights of exotic (Land race x Yorkshire) and native (Moo Lath) Lao pigs. Tropical Animal Health and Production, 2013, 45(3): 865-871. [本文引用:1]
[78] Leterme P, Botero M, Londono A M, Bindelle J, Buldgen A. Nutritive value of tropical tree leaf meals in adult sows. Animal Science An International Journal of Fundamental & Applied Research, 2006, 82(2): 175-184. [本文引用:1]
[79] Nduku X P, Nkukwana T T, Muchenje V. Effects of dietary inclusion of Moringa oleifera leaf meal on feed conversion ratio and physico-chemical characteristics of pork from Large White and Kolbroek pigs. Archivos Latinoamericanos de Producción Animal, 2014, 22(5): 87-90. [本文引用:1]
[80] Bee G. Moringa oleifera as an alternative protein source to soybean meal in pig production. ∥Growth, Development, Muscle Biology and Meat Science. Des Moines, IA: American Dairy Science Asscociation, American Society of Animal Science, 2016: 318-319. [本文引用:1]
[81] Valentín M H V, Luis S F. Effect of Moringa Oleifera meal inclusion on meat quality from the mexican hairless pig. ARPN Journal of Agricultural and Biological Science, 2006, 11(4): 131-141. [本文引用:1]
[82] 刘子放, 邝哲师, 叶明强, 赵祥杰, 罗国庆, 廖森泰, 潘木水. 桑枝叶粉饲料化利用的营养及功能性研究初探. 饲料与畜牧: 新饲料, 2011(7): 33-36.
Liu Z F, Kuang Z S, Ye M Q, Zhao X J, Luo G Q, Liao S T, Pan M S. Preliminary Study on nutrition and function of mulberry stem and leaf powder. Feed and Livestock Husband ry: New Feed, 2011(7): 33-36. (in Chinese) [本文引用:1]
[83] 宋琼莉, 韦启鹏, 邹志恒, 周泉勇, 刘林秀, 陈小连, 严景生. 桑叶粉对育肥猪生长性能、肉品质和血清生化指标的影响. 动物营养学报, 2016(2): 541-547.
Song Q L, Wei Q P, Zou Z H, Zhou Q Y, Liu L X, Chen X L, Luo J S. Effects of mulberry leaf powder on growth performance, meat quality and serum biochemical indexes in finishing pigs. Chinese Journal of Animal Nutrition, 2016(2): 541-547. (in Chinese) [本文引用:1]
[84] Araque H, González C, Pok S, Ly J. Performance traits of finishing pigs fed mulberry and trichanthera leaf meals. Revista Científica De Veterinaria, 2009, ⅩⅤ: 517-522. [本文引用:1]
[85] Phiny C, Ogle B, Preston T R, Borin K. Growth performance of pigs fed water spinach or water spinach mixed with mulberry leaves, as protein sources in basal diets of cassava root meal plus rice bran or sugar palm syrup plus broken rice. Livestock Research for Rural Development (Vol. 20), 2008. http:www.lrrd.org/lrrd20/supplement/phin2.htm. [本文引用:1]
[86] Enechi O C, Odonwodo I. An assessment of the phytochemical and nutrient composition of the pulverized root of Cissus quadrangularis. Bio-Research, 2004, 1(1): 63-68. [本文引用:1]
[87] Sallau A B, Mada S B, Ibrahim S, Ibrahim U. Effect of boiling, simmering and blanching on the antinutritional content of Moringa oleifera leaves. International Journal of Food Safety Nutrition and Public Health, 2012, 2(1): 1-6. [本文引用:1]
[88] Mbah B O, Eme P E, Paul A E. Effect of drying techniques on the proximate and other nutrient composition of Moringa oleifera leaves from two areas in Eastern Nigeria. Pakistan Journal of Nutrition, 2012, 11: 1044-1048. [本文引用:1]
[89] Vitti D, Nozella E F, Abdalla A L, Bueno I C S, Silva Filho J C, Costa C, Godoy P B. The effect of drying and urea treatment on nutritional and anti-nutritional components of browses collected during wet and dry seasons. Animal Feed Science and Technology, 2005, 122(1): 123-133. [本文引用:1]
[90] Tawata S, Fukuta M, Xuan T D, Deba F. Total utilization of tropical plants Leucaena leucocephala and Alpinia zerumbet. Journal of Pesticide Science, 2008, 33(1): 40-43. [本文引用:1]
[91] 杨宇衡, 王之盛, 蔡义民, 赖松家. 氨化银合欢对南江黄羊生长性能和血液指标的影响. 畜牧兽医学报, 2010, 41(7): 835-841.
Yang Y H, Wang Z S, Ca Y M, Lai S J. Effect of urea treated Leucaena leucocephala leaf meal on growth performance and blood parameters of growing Nanjiang goat. Chinese Journal of Animal and Veterinary Sciences, 2010, 41(7): 835-841. (in Chinese) [本文引用:1]
[92] Adekojo S A, Adama T Z, Aremu A, Ijaiya A T. Effects of different methods of processing Leucaena leucocephala leaf meal on growth performance and nutrient digestibility of rabbits. International Journal of Agriculture and Forestry, 2014, 4(5): 380-385. [本文引用:1]
[93] Thierry N N, Léopold T N, Didier M, Moses F M C. Effect of pure culture fermentation on biochemical composition of lam leaves powders. Food & Nutrition Sciences, 2013, 4(8): 851-859. [本文引用:1]
[94] Zhang M, Huang Y, Zhao H, Wang T, Xie C, Zhang D, Sheng J. Solid-state fermentation of Moringa oleifera leaf meal using Bacillus pumilus CICC 10440. Journal of Chemical Technology & Biotechnology, 2017, 92(8): 2083-2089. [本文引用:1]
[95] 任元元, 康建平, 黄静, 周泽林, 邹育. 复合菌种混合发酵提高桑叶蛋白利用率的研究. 食品与发酵科技, 2016, 52(1): 20-23.
Ren Y Y, Kang J P, Huang J, Zhou Z L, Zou Y. Study on improvement of protein utilization of mulberry leaves by mixed fermentation. Food and Fermentation Sciences & Technology, 2016, 52(1): 20-23. (in Chinese) [本文引用:1]
[96] 胡仁建, 杨丽群, 蔡家利, 周丽, 黄永福, 李重阳, 崔红娟. 提高发酵桑叶饲料必需氨基酸含量的复合菌剂. 蚕业科学, 2015, 41(5): 902-907.
Hu R J, Yang L Q, Cai J L, Zhou L, Huang Y F, Li C Y, Cui H J. The composite probiotics for improving the content of essential amino acids in fermented mulberry leaves. Science of Sericulture, 2015, 41(5): 902-907. (in Chinese) [本文引用:1]
[97] 董志浩, 原现军, 闻爱友, 王坚, 郭刚, 李君风, 邵涛. 添加乳酸菌和发酵底物对桑叶青贮发酵品质的影响. 草业学报, 2016, 25(6): 167-174.
Dong Z H, Yuan X J, Weng A Y, Wang J, Guo G, Li J F, Shao T. Effect of lactic acid bacteria and fermentation substrates on the quality of Mulberry( Morus alba)leaf silage. Acta Prataculturae Sinica, 2016, 25(6): 167-174. (in Chinese) [本文引用:1]
[98] Soetan K O, Oyewole O E. The need for adequate processing to reduce the anti-nutritional factors in plants used as human foods and animal feeds: A review. African Journal of Food Science, 2009, 3(9): 223-232. [本文引用:1]