日粮uNDF对反刍动物生长和代谢的作用
兰贵生1, 闫佰鹏1, 李发弟1,2, 李飞1
1.兰州大学草地农业生态系统国家重点实验室,兰州大学草地农业科技学院,甘肃 兰州730030
2.甘肃省肉羊繁育生物技术工程实验室,甘肃 民勤 733300
通讯作者:李飞(1985-),男,辽宁沈阳人,副教授,博士,主要从事反刍动物营养原理与方法研究。E-mail:lfei@lzu.edu.cn

第一作者:兰贵生(1991-),男,甘肃庆城人,在读硕士生,主要从事动物营养与饲料科学研究。E-mail:langsh16@lzu.edu.cn

摘要

未消化中性洗涤纤维(undigested neutral detergent fiber,uNDF)是指不能被瘤胃微生物发酵的中性洗涤纤维(neutral detergent fiber,NDF),对反刍动物生长和代谢具有重要作用。日粮中适宜的uNDF对反刍动物营养和健康至关重要。本文分别从uNDF对反刍动物的采食行为、瘤胃功能、NDF消化率、动物生产性能的营养调控作用和uNDF测定方法以及如何指导日粮配制进行综述,以期为反刍动物的健康和高效生产提供参考和理论依据。

关键词: 未消化中性洗涤纤维; 反刍动物; 营养; 健康
中图分类号:S823.4+4 文献标志码:A 文章编号:1001-0629(2018)05-1247-07
Nutritional function of undigested neutral detergent fiber in ruminant
Lan Gui-sheng1, Yan Bai-peng1, Li Fa-di1,2, Li Fei1
1.State Key Laboratory of Grassland Agro-ecosystem, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China
2.Engineering Laboratory of Mutton Sheep Breeding And Reproduction Biotechnology in Gansu Province, Minqin 733300, Gansu, China
Corresponding author: Li fei E-mail:lfei@lzu.edu.cn
Abstract

The undigested neutral detergent fiber (uNDF) is a portion of neutral detergent fiber that cannot be fermented and utilized by the microorganisms in the rumen. However, it plays an important role in the growth and metabolism of ruminants. Therefore, optimal level of uNDF in the diet is crucial for the nutrition and health of ruminants. In this paper, we reviewed 1) the nutritional functions of uNDF, including feeding behavior, rumen function, NDF digestibility, and diet formulation; 2) uNDF determination method; 3) application of uNDF in diet formulation in order to provide reference and theoretical basis for the health and efficient production of ruminants.

Key words: undigested neutral detergent fiber; ruminant; nutrition; health

反刍动物生产中, 粗饲料的品质、供给量直接影响其生产效益[1], 而作为粗饲料重要品质之一的纤维消化特性是评价粗饲料品质和配制日粮的重要因素。中性洗涤纤维(neutral detergent fiber, NDF)的消化特性影响动物的采食行为、反刍行为、粒径的破碎率、过腹率、填充、干物质采食量(dry matter intake, DMI)及总的牛奶成分产量的效率[2]。以前, 营养学家只注重NDF中可消化部分的研究, 后来发现NDF中不可消化部分在一定程度上影响瘤胃纤维发酵率, 人们才开始关注它。最初Mertens等[3]、Huhtanen等[4]把瘤胃中未消化的中性洗涤纤维称为iNDF(indigestible neutral detergent fiber)。然而, 为了提高描述纤维发酵动力学术语的准确性, Mertens[5]提出uNDF(undigested neutral detergent fiber)的概念, 即在特定发酵时间内发酵后未消化的NDF。对于uNDF和iNDF的认识, 人们之前错误地认为uNDF=iNDF, 其实它们是两个不同概念。uNDF是指在特定发酵时间内发酵后未消化的NDF, 现在多指在发酵240 h后未消化的NDF。iNDF是指在无限长的发酵时间后仍不能消化的NDF, 是一个理论值, 实际生产中不能达到。总之, 以前报道的iNDF实际上就是现在的uNDF。

uNDF是一种功能性纤维成分, 能够影响粗饲料的物理效能、瘤胃填充、纤维的流通及消化。Nousiainen等[6]报道, uNDF与有机物(organic matter, OM)消化率之间有一定的相关性, 因此可以用uNDF的含量来预测粗饲料质量。Raffrenato和van Amburgh[7]报道可以用uNDF和早期发酵时间点来评估纤维的快速和慢速发酵池以及它们的发酵率。Cotanch等[2]报道, uNDF的最低摄入量应为体重的0.39%~0.48%时才能维持瘤胃内环境的稳定。因此, 正确评估日粮中uNDF对反刍动物的营养调控作用, 可以为合理的配制日粮提供理论依据。

1 uNDF测定方法的演变过程

为了准确评估粗饲料和日粮中uNDF的含量, 科学家们进行了大量探究。康乃尔净碳水化合物和蛋白质体系(CNCPS)、Fox等[8, 9]、Tylutki等[10]用2.4倍ADL(ADL× 2.4/NDF; 其中, ADL为酸性洗涤木质素, 2.4, 固定因子)来评估粗饲料uNDF含量。这种方法是由Chander等[11]在1980年提出的, 且用此方法测定结果与Weiss等[12]测定的结果一致。近年来, 营养学家们利用饲料长时间在体外发酵或体内降解的方法测定uNDF的含量, 该方法测定的结果与Chander等[11]提出的方法测定结果不一致。Basle等[13]、Huhtanen等[4]、Raffrerato[14]采用饲料在体外发酵240 h或在尼龙袋降解288 h测定纤维的消化率与Chander等[11]测定结果不一致, 这表明木质素和纤维消化率之间的相关关系不确定, 测定的结果受物候条件、水分、温度、光照和纤维素的影响。目前, 微生物发酵240 h已经替代2.4倍ADL成为最新uNDF测定方法。最近发现, 饲料样品中含有较高灰分可以抑制NDF洗涤液溶解矿物质的能力, 残留的矿物质污染NDF, 导致NDF测量值偏高, 同时也影响uNDF测定[15]。为了试验的准确性, 对测定的NDF做了一定的处理, 并定义为去除灰分和有机物的NDF(aNDFom), 是指用淀粉酶和亚硫酸钠处理, 并在有机物为基础上测定, 排除了矿物质的影响, 使测定uNDF含量更加准确。Apalmonari等[16]多位营养学家在aNDFom的基础上, 用体外发酵240 h方法来测定饲料中uNDF的含量。这种方法已广泛应用于生产实践和科学研究, 是目前测定反刍动物日粮和粗饲料uNDF含量最常用的方法。

2 日粮uNDF对反刍动物营养调控作用
2.1 日粮uNDF对采食量影响

采食量是影响动物生产性能的主要因素。瘤胃填充会使动物产生饱腹感反馈刺激动物从而影响采食量[17]。填充瘤胃的物质主要是瘤胃中难以消化的纤维物质, 由快速发酵NDF池、慢速发酵NDF池和uNDF池组成。它们在瘤胃中的流通速度影响瘤胃空间, 流速越快、瘤胃空间越大、采食量就越高[2]。日粮uNDF不能被微生物利用, 需在总消化道停留较长的时间[18]。日粮uNDF长时间停留在瘤胃, 占据瘤胃空间使动物产生饱腹感从而降低采食量。Detmann等[19]用meta分析方法得出肉牛在育肥期间随日粮uNDF含量的增加, 干物质(dry matter, DM)采食量呈线性下降。Lippke[20]报道, 当日粮中iNDF含量超过总DM含量的15%时, 日粮iNDF的含量与采食量之间有明显的负相关关系。William等[21]报道, 妊娠后期奶牛饲喂高uNDF240含量(约10.7%DM)苜蓿(Medicago sativa)干草与饲喂低uNDF240含量(约8.3%DM)苜蓿干草相比有更高DM采食量, 并能改善奶牛的健康状态; 但在后期试验中, 奶牛饲喂高含量uNDF240苜蓿干草与低含量uNDF240苜蓿干草相比, DM采食量明显下降。Fustin等[22]报道, 奶牛饲喂高含量uNDF240苜蓿干草与低含量uNDF240相比DM采食量和反刍时间没有明显变化, 并得出DM采食量主要受粗饲料纤维的消化率而不仅仅是uNDF240摄入量的影响, 并推荐饲喂干燥的全混合日粮时, uNDF240摄入量约为活体重的0.48%才能维持健康的瘤胃环境。综上所述, 日粮uNDF对瘤胃的填充能够影响反刍动物采食量, 且随着日粮uNDF的含量增加, 反刍动物的采食量下降, 控制日粮uNDF水平是保证反刍动物较高采食量的重要营养调控手段。

2.2 日粮uNDF对瘤胃功能的影响

瘤胃草垫层是指过于成熟的牧草, 经过反刍动物的物理嚼碎, 漂浮在瘤胃液中形成的一层草垫。它的形成是反刍动物维持正常瘤胃功能的前提和重要指标, 主要有两个物理功能。一个是通过物理刺激反刍、唾液分泌和瘤胃运动来优化瘤胃微环境, 特别是调节瘤胃pH; 另一个是延长纤维颗粒滞留时间, 提高纤维在瘤胃中的消化率[23, 24, 25]。Sutherland[26]将瘤胃草垫层称为非常有效的第一阶段的分离器, 其可以通过选择性地滞留不可消化小颗粒饲料(“ 过滤床” 效应)来调节固体食糜在瘤胃中停留的时间。瘤胃中的uNDF垫可作为瘤胃内容物的过滤层, 在uNDF垫下面未消化营养物质随瘤胃液移出瘤胃进入后消化道。正常的瘤胃草垫层可以选择性地滞留饲料中的纤维成分, 能够提高纤维的消化率和产奶量。相对较小的食糜团通过瘤胃的速度较快, 饲料效率及瘤胃消化率较低; 相对较大的食糜团通过瘤胃的速度较慢, 瘤胃中饲料消化率较高[27]。粒径较大的纤维食糜团会对瘤胃壁施加压力, 引起动物产生反复反刍, 从而降低动物采食量。在瘤胃消化能力较强的条件下, 消化过多的淀粉使瘤胃淀粉分解菌的数量增加, 纤维分解菌的数量减少, 降低纤维的消化率, 从而降低牛奶的产量, 提高动物瘤胃丙酸及总挥发性脂肪酸含量, 同时也提高了反刍动物患瘤胃酸中毒的风险[27]。Fustini等[22]报道, 与低uNDF日粮相比, 奶牛饲喂高uNDF日粮瘤胃pH在5.8以下持续的时间更短。因此, 可以通过在日粮中配制一定比例富含uNDF的饲料原料调节淀粉在瘤胃中的降解速度以及增加动物的反刍时间, 中和淀粉过度发酵产生的挥发性脂肪酸及乳酸, 防止亚急性瘤胃酸中毒, 维持瘤胃健康。

2.3 uNDF对NDF消化率的影响

Combs和Eastridge[28]总结了影响NDF消化率的3个主要因素, 一是潜在可消化中性洗涤纤维(potentially digestible neutral detergent fiber, pdNDF)在日粮纤维中所占的比例。日粮中的纤维包含两部分, pdNDF和iNDF, 通常用日粮中总的NDF减去iNDF来确定pdNDF。日粮纤维中不可消化的部分只能通过瘤胃蠕动移出瘤胃[29]。与潜在可消化部分相比, 不可消化部分在瘤胃滞留的时间更长, 容易在瘤胃中堆积[30, 31]。长时间滞留在瘤胃会使动物产生饱腹感从而降低干物质采食量[32]。二是pdNDF在消化道中的流通速度。影响瘤胃纤维食团在瘤胃中消化率的主要因素是瘤胃食团在瘤胃中的流通速度, 流速越快, 消化率就越高。van Soest等[33]提出瘤胃食糜中NDF包含两部分, 且这两部分消化顺序不同, 其中一部分消化速度快, 另一部分消化速度慢。Raffrenato和Amburgh[7]根据两部分NDF的消化速度不同将其定义为快速消化NDF和慢速消化NDF。Raffrenat[14]将瘤胃食糜中的NDF分为三部分, 快速发酵NDF池、NDF池及uNDF(图1)。快速发酵NDF在瘤胃中的发酵速度较快, 且易被微生物消化, 可以快速在瘤胃中消失; 慢速发酵NDF在瘤胃中发酵的速度较慢, 容易造成uNDF在瘤胃中堆积, 致使瘤胃中滞留大量食糜不能及时排出, 瘤胃空间减小, DM采食量及NDF的消化率降低。而Lund等[34]研究发现, 瘤胃食糜NDF中的pdNDF与iNDF相比, pdNDF流通的速度更慢。这与Raffrenato[14]的研究结果不一致。这可能与他们所研究粗饲料粒径的均一性和粒径的大小有关。除此之外, 其他因素, 例如饲料粒径的大小、粒径的重力和浮力以及其他的物理特征(饲料的韧性和咀嚼过程中饲料破碎率)也能影响饲料颗粒在瘤胃流通速率。瘤胃内容物含有两层, 上层为颗粒较大固体层, 该层作用主要是通过调节和刺激咀嚼来改变饲料颗粒的大小, 这部分食团的流通速率极慢; 下层是颗粒较小的液体层, 该层食糜的流通速度较快, 这种模式是由Mertens和Ely[35]提出的。饲料中uNDF的含量较高, 在瘤胃中不易消化, 滞留在固体层, 占据一定的瘤胃空间, 阻碍了可消化纤维的流通速度, 影响采食量, 从而降低了纤维的消化率。三是pdNDF在瘤胃中的降解率。饲粮中90%95%纤维在瘤胃中降解[36]。饲料纤维降解速率主要取决于纤维固有的特征及瘤胃微生物与纤维接触面积[29]。植物表面被角质层覆盖, 抵制微生物发酵并限制微生物进入发酵位点。通过破碎、研磨和咀嚼等方式使饲料颗粒断裂, 微生物由断裂部位渗入并降解[37]。日粮中uNDF不能被微生物降解, 覆盖pdNDF表面, 对瘤胃食团中的pdNDF形成包被阻挡了纤维分解菌与pdNDF接触, 从而降低NDF消化率。

图1 饲料在体外发酵30、120和240 h NDF的消化率及NDF池Fig. 1 The digestibility of NDF and NDF pool in vitro at 30, 120 and 240 h

2.4 日粮uNDF对反刍动物生产性能的影响

uNDF在瘤胃中不能被微生物降解成有机酸, 为机体提供生长所需的能量, 但日粮uNDF含量会影响动物的生产性能(表1)。Thoney和Hinge[38]用易消化性豆壳和难消化性燕麦(Avena fatua)壳饲喂羔羊发现, iNDF含量越高采食量越低, NDF消化率越高采食量越高。Oba和Allen[39]在体外发酵和尼龙袋降解粗饲料试验中报道, NDF消化率每增加1%, DM采食量增加0.17 kg, 4%的脂肪校正乳(fat correction milk, FCM)增加0.25 kg。Oba等[40]体外发酵11种不同的青贮玉米(Zea mays), 得出NDF每增加1%, DM采食量增加0.12 kg, 4%FCM增加0.22 kg。Jung等[41]发现, 奶牛饲喂至少包含40%玉米青贮, NDF消化率每增加1%, DM采食量增加0.14 kg, FCM增加0.12 kg。Bernard等[42]研究发明, 给奶牛饲喂高纤维、低消化率青贮玉米, 牛奶中的乳脂浓度更高, 能量校正乳的产量较低。Krä mer-Schmid等[43]报道, 产奶量和日增重与aNDFom的消化率正相关, 瘤胃中pdNDF池减少会导致细胞壁结合蛋白和微生物蛋白产量以及奶牛总的代谢蛋白降低。综上所述, 提高NDF的消化率可以提高动物的生产性能。

表1 不同粗饲料来源uNDF含量对反刍动物生产性能的影响 Table 1 Effect of undigested neutral detergent fiber (uNDF) content from different forage sources on the growth performance of ruminants
3 如何使用uNDF配制反刍动物日粮

目前, 高产反刍动物日粮配方的焦点在于评估日粮中NDF的含量, 以实现摄入更多的高能日粮。同种饲料的NDF和ADF含量越高, 饲料营养品质越差[45], 然而饲料中的NDF水平较低会造成反刍瘤胃功能障碍, 因此需要一个既满足瘤胃健康又满足动物高产的最低NDF水平。NRC推荐在DM的基础上, 奶牛日粮中应该包含30%35%的NDF才能够实现产奶量和DM采食量之间的平衡, 但这并未考虑乳脂的含量[46]。在肉牛生产饲养方面, 动物饲喂高淀粉日粮, NDF含量经常低于16%[46]。粗饲料中的NDF含量变异性很大。当粗饲料中的NDF的范围在30%80%时, 会给反刍动物日粮的配制提供困难[47]。而粗饲料中的NDF含量随着植物成熟度、生长环境、阳光、水分的变化而变化[48]。据报道, 随着玉米秸秆收割时间的延迟, 钙、粗灰分、粗脂肪、NDF、酸性洗涤纤维和ADL的含量呈增加趋势, 而粗蛋白、磷、水溶性碳水化合物和总糖的含量都呈减少趋势[49]。即使日粮总NDF含量相同, pdNDF也不相同。当反刍动物饲喂粗饲料基础日粮时, 增加纤维消化率, 就能提高动物的生产性能。在许多模型中, iNDF是影响饲料利用率的主要因素[50]。康奈尔净碳水化合物和蛋白质系统(CNCPS)[10, 51]和北欧奶牛代谢模型[52]中利用iNDF计算OM、NDF消化率、瘤胃NDF池及微生物N的流量, 为合理地配制日粮提供了依据。牧草中iNDF含量对采食量的影响在亚热带和热带反刍动物放牧系统中尤为显著。降低日粮中的iNDF含量可以提高奶牛的生产性能而不是降低日粮中的NDF含量[53]。奶牛饲喂苜蓿干草和小麦(Triticum aestivum)秸秆为基础日粮时, uNDF的摄入量为活体重的0.48%, 最低摄入量不能低于体重的0.4%, 才能维持正常瘤胃健康[2]。羔羊和母羊饲喂豆壳和燕麦壳为基础日粮时, 推荐日粮中iNDF最大含量为17%, 并推荐泌乳母羊日粮中iNDF的含量最大不能超过10%[38]。因此在配制反刍动物日粮时, 准确评估牧草uNDF的含量, 将高uNDF牧草与低uNDF牧草混合使用实现日粮配方最佳的uNDF水平, 使之既能满足动物的能量需求, 又能维持瘤胃的健康。

4 小结

uNDF对反刍动物的采食量、纤维消化率、瘤胃健康及动物生产性能方面有重要的作用。准确评估日粮uNDF的含量, 保证日粮中最佳的uNDF含量, 既能满足动物的能量需求, 又能维持瘤胃内环境稳定和动物健康。目前, uNDF对反刍动物营养调控作用的研究较少, 其很多营养作用还不清楚, 需日后进一步研究uNDF在反刍动物瘤胃内环境中的调节机制及营养调控作用。

The authors have declared that no competing interests exist.

参考文献
[1] 贾存辉, 钱文熙, 吐尔逊阿依·赛买提, 敖维平, 古力皮叶木·阿布都克然木. 粗饲料营养价值指数及评定方法. 草业科学, 2017, 34(2): 415-427.
Jia C H, Qian W X, Tursunay·Samat, Ao W P, Gulpiya·Aadukirem. Roughage nutritional value evaluation indices and reseaearch mthods. Pratacultural Science, 2017, 34(2): 415-427. (in Chinese) [本文引用:1]
[2] Cotanch K W, Van Amburgh, M E, Zontini A, Fustini M, Palmonari A, Formigoni A. Applications of uNDF in ration modeling and formulation. Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, 2014: 4295-4298. [本文引用:]
[3] Mertens D R, Forbes J M, France J. Rate and extent of digestion, quantitative aspects of ruminant digestion and metabolism. Quarterly Review of Biology, 1993, 53(1): 193-194. [本文引用:1]
[4] Huhtanen P, Nousiainen J, Rinne M. Recent developments in forage evaluation with special referenceto practical applications. Agricultural and Food Science, 2006, 15(3): 293-323. [本文引用:2]
[5] Mertens D R. Indigestible versus undigested NDF: The distinction. Syracuse: Fiber Group Meeting, 2013. [本文引用:1]
[6] Nousiainen J, Hellämäki M, Huhtaen P. Prediction of the digestibility of the primary growth of grass silages harvested at different stages of maturity from chemical composition and pepsin-cellulase solubility. Animal Feed Science and Technology, 2003, 103(1): 97-111. [本文引用:1]
[7] Raffrenato E, Amburgh M E V. Development of a mathematical model to predict sizes and rates of digestion of a fast and slow degrading pool and the indigestible NDF fraction. Syracuse: Cornell Nutrition Conference for Feed Manufacturers, 2010. [本文引用:2]
[8] Fox D G, Sniffen C J, O’Connor J D, Russell J B, van Soest P J. A net carbohydrate and protein system for evaluating cattle diets: Ⅲ. Cattle requirements and diet adequacy. Journal of Animal Science, 1992, 70(11): 3578-3596. [本文引用:1]
[9] Fox D G, Tedeschi L O, Tylutki T P, Russell J B, Amburgh M E V. The cornell net carbohydrate and protein system model for evaluating herd nutrition and nutrient excretion. Animal Feed Science and Technology, 2004, 112(1-4): 29-78. [本文引用:1]
[10] Tylutki T P, Fox D G, Durbal V M, Tedeschi L O, Russel J B. Cornell net carbohydrate and protein system: A model for precision feeding of dairy cattle. Animal Feed Science and Technology, 2008, 143(1): 174-202. [本文引用:2]
[11] Chand ler J A, Jewell W J, van Soest P J, Robertson J B. Predicting methane fermentation biodegradability. Biotechnology and Bioengineering Symposium, 1980, 10: 93-107. [本文引用:3]
[12] Weiss W P, Conrad H R, Pierre N R S. A theoretically-based model for predicting total digestible nutrient values of forages and concentrates. Animal Feed Science and Technology 1992, 39(S1-2): 95-110. [本文引用:1]
[13] Besle J M, Cornu A, Jouany J P. Roles of structural phenylpropanoids in forage cell wall digestion. Journal of the Science of Food and Agriculture, 1994, 64(2): 171-190. [本文引用:1]
[14] Raffrenato E. Physical, chemical and kinetic factors associated with fiber digestibility in ruminants and models describing these relationships. PhD Thesis. Ithaca, NY: Cornell University, 2011. [本文引用:3]
[15] Sirois P K. uNDFom: How does it vary across the forage population?Syracuse: Cornell Nutrition Conference for Feed Manufactures, 2015: 1-11. [本文引用:1]
[16] Palmonari A, Canestrari G, Bonfante E, Fustini M, Mammi L. Technical note: In vitro amylase-treated, ash-corrected neutral detergent fiber, with addition of sodium sulfite digestibility at 240 hours with or without rumen fluid reinoculation. Journal of Dairy Science, 2017, 100(2): 1200-1202. [本文引用:1]
[17] Allen M S. Physical constraints on voluntary intake of forages by ruminants. Journal of Animal Science, 1996, 74(12): 3063-3075. [本文引用:1]
[18] Huhtanen P, Nousiainen J, Rinne M. Recent developments in forage evaluation with special reference to practical applications. Agricultural and Food Science, 2008, 15(3): 293-323. [本文引用:1]
[19] Detmann E, Gionbelli M P, Huhtanen P. A meta-analytical evaluation of the regulation of voluntary intake in cattle fed tropical forage-based diets. Journal of Animal Science, 2014, 92(10): 4632-4641. [本文引用:1]
[20] Lippke H. Regulation of voluntary intake of ryegrass and sorghum forages in cattle by indigestible neutral detergent fiber1. Journal of Animal Science, 1986, 63(5): 1459-1468. [本文引用:1]
[21] Williams S, Leno B, Ryan C. The effects of varying undigested neutral detergent fiber and physically effective neutral detergent fiber content of fresh cow rations on dry matter intake, rumination and milk yield in multiparous Holstein cows. Journal of Animal Science, 2016, 94(S5): 788-788. [本文引用:1]
[22] Fustini M, Palmonari A, Canestrari G, Bonfante E, Mammi L. Effect of undigested neutral detergent fiber content of alfalfa hay on lactating dairy cows: Feeding behavior, fiber digestibility, and lactation performance. Journal of Dairy Science, 2017, 100(6): 4475-4484. [本文引用:2]
[23] Poppi D P, Ellis W C, Matis J H, Lascano C E. Marker concentration patterns of labelled leaf and stem particles in the rumen of cattle grazing Bermuda grass ( Cynodon dactylon) analysed by reference to a raft model. British Journal of Nutrition, 2001, 85(5): 553-563. [本文引用:1]
[24] Tafaj M, Junck B, Maulbetsch A, Steingass H, Piepho H P, Drochner W. Digesta characteristics of dorsal, middle and ventral rumen of cows fed with different hay qualities and concentrate levels. Archives of Animal Nutrition, 2004, 58(4): 325-342. [本文引用:1]
[25] Zebeli Q, Tafaj M, Metzler B, Steinga H, Drochner W. New aspects on the contribution of ruminal mat quality on digesta kinetics in reticulorumen of high-producing dairy cows. Ubersichten zur Tierernahrung, 2006, 34: 165-196. [本文引用:1]
[26] Sutherland T M. Particle Separation in the Forestomachs of Sheep. //Dobson A, Dobson M J. Aspects of Digestive Physiology in Ruminant. NY: FAO, 1988. [本文引用:1]
[27] Weakley D C. Methods and systems for adjusting ruminally digestible starch and fiber in animal diet. US20150164110, 2015. [本文引用:2]
[28] Combs D K, Eastridge M L. Relationship of NDF digestibility to animal performance. Fort Wayne, Indiana, USA: Tri-State Dairy Nutrition Conference, 2015: 101-112. [本文引用:1]
[29] Waldo D R, Smith L W, Cox E L. Model of cellulose disappearance from the rumen. Journal of Dairy Science, 1972, 55(1): 125-129. [本文引用:2]
[30] Allen M S, Mertens D R. Evaluating constraints on fiber digestion by rumen microbes. Journal of Nutrition, 1998, 118(2): 261-270. [本文引用:1]
[31] Poppi D, Minson D, Ternouth J. Studies of cattle and sheep eating leaf and stem fractions of grasses. 2. Factors controlling the retention of feed in the reticulo-rumen. Australian Journal of Agricultural Research, 1981, 32(1): 109-121. [本文引用:1]
[32] Poppi D P, Minson D J, Ternouth J H, Poppi D P, Minson D J. Studies of cattle and sheep eating leaf and stem fractions of grasses. 1. The voluntary intake, digestibility and retention time in the reticulo-rumen. Australian Journal of Agricultural Research, 1981, 32(4): 99-108. [本文引用:1]
[33] van Soest P J, van Amburgh M E, Robertson J B, Knaus W F. Validation of the 2. 4 times lignin factor for ultimate extent of NDF digestion, and curve peeling rate of fermentation curves into pools. Syracuse: Cornell Nutrition Conference for Feed Manufacturers, 2008: 139-149. [本文引用:1]
[34] Lund P, Weisbjerg M R, Hvelplund T. Digestible NDF is selectively retained in the rumen of dairy cows compared to indigestible NDF. Animal Feed Science and Technology, 2007, 134(1): 1-17. [本文引用:1]
[35] Mertens D R, Ely L O. A dynamic model of fiber digestion and passage in the ruminant for evaluating forage quality. Journal of Animal Science, 1979, 49(4): 1085-1095. [本文引用:1]
[36] Huhtanen P, Ahvenjärvi S, Broderick G A, Shingfield K J. Quantifying ruminal digestion of organic matter and neutral detergent fiber using the omasal sampling technique in cattle: A meta-analysis. Journal of Dairy Science, 2010, 93: 3203-3215. [本文引用:1]
[37] Baker F, Harriss S T. The role of the microflora of the alimentary tract of herb: Vvora with special reference to ruminants. No. 2. Microbial digestion in the rumen (and caecum) with special reference to the decomposition of structural cellulose, Nutrition Abstracts and Reviews, 1994, 16: 3-12. [本文引用:1]
[38] Thonney M L, Hinge D E. Fermentable fiber for diet formulation. Syracuse: Cornell Nutrition Conference for Feed Manufacturers, 2013: 174-189. [本文引用:2]
[39] Oba M, Allen M S. Evaluation of the importance of the digestibility of neutral detergent fiber from forage: Effects on dry matter intake and milk yield of dairy cows. Journal of Dairy Science, 1999, 82: 589-596. [本文引用:1]
[40] Oba M, Allen M, Eastridge M L. In vitro digestibility of forages. Fort Wayne, Indiana, USA: Tri-State Dairy Nutrition Conference, 2005: 81-91. [本文引用:1]
[41] Jung H G, Raeth-Knight M, Linn J G. Forage fiber digestibility: Measurement, variability, and impact. Knight. 2004: 105-125. [本文引用:1]
[42] Bernard J K, West J W, Trammell D S. Effect of replacing corn silage with annual ryegrass silage on nutrient digestibility, intake, and milk yield for lactating dairy cows. Journal of Dairy Science, 2002: 85: 2277-2282. [本文引用:1]
[43] Krämer-Schmid M, Lund P, Weisberg M R. Importance of NDF digestibility of whole crop maize silage for dry matter intake and milk production in dairy cows. Animal Feed Science and Technology, 2016, 219: 68-76. [本文引用:1]
[44] Mertens D R. Do we need to consider NDF digestibility in the formulation of ruminant diets?Winnipeg, Manitoba, Canada: 27th Western Nutrition Conference, 2006: 19-20. [本文引用:1]
[45] 王旭哲, 岳亚飞, 张凡凡, 马春晖. 全株玉米青贮营养品质的紧实度效应. 草业科学, 2016, 33(9): 1893-1900.
Wang X Z, Yue Y F, Zhang F F, Ma C H. The compaction effect of nutritional quality of whole plant corn silage. Pratacultural Science, 2016, 33(9): 1893-1900. (in Chinese) [本文引用:1]
[46] Arelovich H M, Abney C S, Vizcarra J A, Pas M L G. Effects of dietary neutral detergent fiber on intakes of dry matter and net energy by dairy and beef cattle: Analysis of published data. Professional Animal Scientist, 2008, 24(5): 375-383. [本文引用:2]
[47] Jung H G, Allen M S. Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants. Journal of Animal Science, 1995, 73(9): 2774-2790. [本文引用:1]
[48] Jung H G. Forage digestibility: The intersection of cell wall lignification and plant tissue anatomy Gainesville, Florida: 23rd Annual Florida Ruminant Nutrition Symposium, 2012: 162-174. [本文引用:1]
[49] 闫贵龙, 田树飞, 穆秀明, 曹春梅, 王瑞兵, 陈哲凯. 摘穗和收获时间对甜玉米秸秆主要营养成分的影响. 草业科学, 2015, 32(8): 1323-1328.
Yan G L, Tian S F, Mu X M, Cao C M, Wang R B, Chen Z K. Influence of ear stripping and stalkhar-vesting time on main nutrient components of sweet corn stalks. Pratacultural Science, 2015, 32(8): 1323-1328. (in Chinese) [本文引用:1]
[50] Poppi D P. Predictions of food intake in ruminants from analyses of food composition. Australian Journal of Agricultural Research, 1996, 47(4): 489-504. [本文引用:1]
[51] Fox D G, Tedeschi L O, Tylutki T P, Russell J B. The cornell net carbohydrate and protein system model for evaluating herd nutrition and nutrient excretion. Animal Feed Science and Technology, 2004, 112(1-4): 29-78. [本文引用:1]
[52] Danfaer A, Huhtanen P, Uden P. The Nordic Dairy Cow Model, Karoline-Description. Walling, UK: CABI Publishing, 2006: 383-406. [本文引用:1]
[53] Harper K, Mcneill D. The role iNDF in the regulation of feed intake and the importance of its assessment in subtropical ruminant systems (the role of iNDF in the regulation of forage intake). Revue Déconomie Politique, 2015, 5(3): 778-790. [本文引用:1]