草地生物土壤结皮
马洁, 陈先江, 侯扶江
草地农业生态系统国家重点实验室 兰州大学草地农业科技学院,甘肃 兰州 730020
通讯作者:侯扶江(1971-),男,河南扶沟人,教授,博导,博士,主要从事草地-家畜互作研究。 E-mail:cyhoufj@lzu.edu.cn

第一作者:马洁(1992-),女,甘肃定西人,在读硕士生,主要从事生物土壤结皮研究。E-mail:majie14@lzu.edu.cn

摘要

生物土壤结皮是由隐花植物与土壤中的细菌、真菌以及土壤颗粒结合形成的复杂生物覆盖体,它们广泛分布于世界上各草地类组中,在改善生态环境和防治草地退化方面起到了积极的作用。多年来,国内外学者就相关问题开展了大量的研究,但总体来说,主要研究仍集中在对其功能和作用的认知方面,而对全球变化背景下生物土壤结皮的演变以及它们维护生态系统稳定性机理方面的研究还十分欠缺。本文综述了国内外该领域的现有研究成果,讨论了目前研究的不足以及未来的研究方向,以期促进生物土壤结皮相关研究,加深对草地生态系统土壤演替过程的认识。

关键词: 土壤结皮; 组成多样性; 分布; 生态功能; 研究展望
中图分类号:S812.2 文献标志码:A 文章编号:1001-0629(2016)7-1243-10 doi: 10.11829/j.issn.1001-0629.2015-0414
A review on biological soil crusts of grassland
Ma Jie, Chen Xian-jiang, Hou Fu-jiang
Key Laboratory of Grassland Farming Systems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
Corresponding author: Hou Fu-jiang E-mail:cyhoufj@lzu.edu.cn
Abstract

Biological soil crusts are a complex covering integrities developing by combining cryptigams with bacteria,fungi and soil particles, and are widely distributed in each grassland type in the world, and play an active role in improving the ecological environment and prevention of grassland degradation. In recently years, many studies throughout the world have been conducted in this field, and these studies focus on the cognition of its function and effect. However, how biological soil crusts develop under global change and how they maintain the stability of the ecosystem are still not well documented. This paper reviewed the research achievements in this filed, and discussed the current shortage and future directions of the research, and these would encourage the biological soil crusts to further advance and helpful understand the soil evolution in grassland ecosystem.

Keyword: biological soil crusts; composition diversity; distribution; ecological functions; prospect

草地是面积最大的陆地生态系统, 具有改良土壤、调节气候、净化环境、维持物种多样性等的作用[1]。随着人类活动加强, 草原不合理利用, 加之全球气候变化, 草地面积减少、生产力下降, 制约了农牧业生产和人民生活的提升。草地退化及其生态恢复已经成为世界性问题[2], 从生物土壤结皮(biological soil crusts)的角度, 揭示草地退化和恢复机制是其中的重要方面[3, 4]

草地生物土壤结皮是由生活于草地土壤表面的非维管束植物(蓝藻、绿藻、硅藻、地衣和苔藓)和微生物(土壤细菌、真菌等), 与土壤颗粒通过团聚和胶结作用在土壤表层形成的复合生物体[5]。它能固定大气中的氮、碳, 增加土壤有机质, 改良土壤[6], 在荒漠草地中的盖度甚至超过生物总盖度的40%[7]。生物土壤结皮往往出现在高等植物分布受限的环境或者植物之间的空地上, 生物种类不易辨别, 所以长期受到忽视。20世纪90年代以后, 人们发现生物土壤结皮在防止草地退化等方面有重要作用, 其研究逐渐引起人们的重视, 对它的保护已被列入草地生态系统管理尤其是荒漠草地管理的优先等级[8]。此后, 国内外学者对生物土壤结皮的时空格局、生物组成、形态结构、生态功能和管理等开展了全面研究[9]

1 草地生物土壤结皮的组成及演替

生物土壤结皮群落主要由自养生物体和异养生物体组成。前者主要包括藻类(algae)、地衣(lichen)和苔藓(moss)等, 其光合作用是结皮群落生产力的主要来源; 后者主要包括细菌(bacteria)、微小真菌(microfungi)等, 在结皮中起分解和代谢作用[10]。它们利用菌丝体、假根以及分泌物胶结微小的土壤颗粒和大气降尘, 团聚成厚度为3~10 mm的毯状结构覆盖在地表, 成为草地生态系统的“ 系统工程师” [11]。根据生物土壤结皮群落中优势生物组分, 可以划分为藻类结皮、地衣结皮和苔藓结皮[12], 各类型结皮的形态、功能各异, 组成成分具有多样性。

藻类结皮是生物土壤结皮演替的最初阶段。它以物理结皮和微生物结皮为基础, 随着时间的推移, 微环境条件改善, 沙粒间隙被大气降尘所填充, 细菌分泌的胞外多糖黏结形成表面细致平滑的无机层, 藻类出现并迅速繁殖[13, 14]。生物土壤结皮中蓝藻(Cyanobacteria)的种类和数量比例较高[15]。藻类对土壤类型的适应性因种而异, 不同区域的群落组成差异性较大。譬如黄土高原3个侵蚀区藻类的种类组成及优势种均有差异[16]。藻类虽不易被肉眼观察到, 但有藻类的土壤表面一般会有相对应的色斑, 蓝细菌占优势的结皮往往呈现蓝绿色或黑色, 而绿藻会在土壤湿润时呈绿色[17]。藻类能够显著提高土壤的酶活性和土壤肥力, 促进藻类结皮发育成地衣或苔藓结皮[18, 19]

地衣是藻类和菌类的共生体, 它具有菌丝和假根等, 能够黏结土壤, 穿透沙土表层并紧密连接叶状体, 形成稳定的结皮形态, 进而抵御风水侵蚀, 促进有机物累积[20]。草地生态系统中地衣的盖度与地表环境的稳定性相关, 可以指示环境的变化[21]。美国西部、哥伦比亚等地广泛存在着地衣结皮[22]。腾格里沙漠、沙坡头地区也鉴定出分属于5目13科16属的地衣植物22种[23]。地衣结皮的颜色呈现黑、褐、白、绿色, 表面呈凹凸不平的壳状, 可以通过形态特征与藻类结皮相区别[24]

苔藓结皮是生物土壤结皮发育和演替的最高阶段, 能显著加快矿物质风化的速度, 积累营养元素供植物生长[25]。古尔班通古特沙漠的垄间低地生存着以刺叶墙藓(Tortula desertorum)和真藓为优势种的苔藓植物[26], 沙坡头有真藓为优势种的2科7属共16种苔藓植物[27]。苔藓结皮的多度和盖度与土壤粘粒含量呈正比, 土表粗糙度的增加有利于种子萌发及植物的侵入、定居[28, 29, 30]。生长后期, 苔藓结皮呈现较深的颜色, 有效吸收光照, 下层土壤在寒冷的天气下保持较高的温度, 以保证土壤微生物的生长活动[31](表1)。

表1 各类草地生物土壤结皮群落组成多样性 Table 1 Community composition diversity of biological soil crusts in several types of grassland

一般情况下, 生物土壤结皮的演替始于大型丝状蓝细菌等藻类定殖; 随着地表固定和土壤基质的改善, 地衣和苔藓开始生长, 结皮自身的蓄水、抗机械干扰以及固沙能力依次增强(图1)。这个过程中, 组成植物种从低等到高等, 种群丰富度和群落多样性从小到大[42]。但是当环境条件适宜时, 结皮的演替也可能不经过其中一个阶段而直接发育到更高级的阶段。在生物结皮成为典型特征的地域, 密集频繁的放牧、旅游和火烧等造成生物土壤结皮减少, 甚至向上一个阶段退化[43]

图1 生物土壤结皮的演替
注:①降尘填充沙粒间隙, 丝状藻类定殖; ②地表固定, 外界干扰少; ③基质稳定, 水分充足; ④人工接种; 充足的光照、水分, 微地形条件适宜; 土壤表面及基质稳定; ⑤火烧, 高强度的放牧, 高密度的旅游, 频繁的交通; ⑥长期机械干扰、家畜和人类活动; ⑦土壤结构遭到破坏; 生态环境持续性恶化, 水土流失严重, 草地退化加剧。
Fig.1 The succession of biological soil crust
Note: ①The gap among sands full with dustfull, and algae are colonization. ②The process needs stable soil surface and less disturbance. ③Moss needs good soil matrixs and suitable moisture condition. ④Artificial inoculation; enough illumination and moisture and suitable microtopography condition; stable soil surface and matrixs. ⑤Burn, high grazing intensity, excessive tourism, and traffic disturbance frequently. ⑥Long-term mechanical disturbance and activities of livestocks and human. ⑦The soil structure were destroyed; entironment getting worse, soil erosion severly and degenerate seriously.

2 影响草地结皮分布的因素

生物土壤结皮能够适应多种气候条件和土壤生境, 对外界胁迫具有一定抗性, 在世界各类草地生态系统中多有分布[44]。生物土壤结皮的组成、发育以及盖度、多度等存在地域间甚至地域内的差异。

在全球或区域尺度上, 生物土壤结皮的分布主要受气候影响。结皮的酶活性、新陈代谢速率、生理活动与温度和降水密切相关[45]。降水较多, 则适宜形成以苔藓为优势种的生物土壤结皮[46]。温度变化会改变地面的蒸散特征, 不利于对温度敏感的结皮生物的生长。温度升高会影响结皮在夜间捕获凝结水的能力, 从而缩短其生物活性[47]

在景观尺度上, 土壤的质地和化学特性影响着生物结皮群落组成, 土壤颗粒是主导因素。土壤质地较细能提高藻类、地衣、苔藓的盖度和物种丰富度[48]。碱性土壤适宜蓝藻类结皮的发育, 绿藻则偏好酸性土壤; 土壤碳酸钙含量高促进地衣定植[49]。蓝藻的丰富度与钠、镉、锂、铜、钼、锶含量呈负相关, 与铅和锌含量呈正相关[50]

在生态系统尺度上, 生物结皮的分布对地貌部位有强选择性。在古尔班通古特沙漠, 藻结皮主要分布于沙垄坡部, 从沙坡至丘间低地, 逐渐演替为连片分布地衣结皮和斑块状的与地衣镶嵌而生的苔藓结皮, 同时生物结皮的盖度、厚度、抗压性从垄间至垄顶逐渐减小[51]

在群落尺度上, 同一生境中的高等植物与生物结皮的形成有密切联系。一般盖度高的植被遮蔽光照和降水, 结皮生物体无法与其竞争资源; 植被稀疏的荒漠, 高等植物的生长受水分限制而呈斑块状[52], 斑块之间的裸地为生物土壤结皮提供了空间、水分和光照, 这也是生物土壤结皮主要集中于干旱、半干旱地区的原因之一。

人类活动是影响生物土壤结皮分布的重要因素。放牧、旅游和火烧等高强度的活动会导致结皮减少甚至消失。放牧家畜的践踏集中作用于土壤表面的结皮层, 对微生物的数量分布及其碳氮代谢产生明显作用[53]。火烧是常用的生态系统管理手段, 生物土壤结皮对轻度火烧具有一定的适应性, 且轻度火烧可消除地表的凋落物, 减少高等植物的生物量, 有利于结皮的再形成和重新分布; 但中高强度的火烧显著降低结皮盖度, 增加地表侵蚀的风险[54, 55]

生物土壤结皮广泛分布于各类型的荒漠生态系统, 以及高山冻原和较湿润地区植被演替的早期阶段[56], 它的出现和发展特征可以用作评价草地生态环境健康状况的指标[57](表2)。总之, 气候、海拔、土壤、维管植物群落、家畜和野生动物、人类管理以及草地生态系统的健康状况等共同影响着生物土壤结皮的分布。

表2 生物土壤结皮与草地生态系统健康状况 Table 2 The relationship between biological soil crusts and grassland ecosystem healthy condition
3 草地生物土壤结皮的生态功能
3.1 生物土壤结皮对土壤养分的影响

高等植物是土壤有机质的重要来源, 但植物株丛间隙的裸地上有机质匮乏。生物土壤结皮在地表繁殖, 蓝藻、地衣、绿藻和苔类通过光合作用固定碳, 提高植物间隙的土壤肥力。生物土壤结皮主要影响0~5 cm土壤有机质, 可为浅根系植物种子的萌发和生长提供有机肥, 促进植物的繁衍与更新[62]。冻原高山草地和冷荒漠草地中以苔藓、地衣为主的结皮能固定大量的泥炭, 成为陆地生态系统的重要碳汇[63]。湿度和土壤呼吸等因素限制结皮, 固定有机碳, 生物结皮减少土壤CO2排放的作用与结皮厚度正相关[64]

图2 生物土壤结皮的主要生态功能
注:①促进植物生长, 捕获种子; ②降低风速, 为结皮发育提供稳定的阴蔽环境; ③稳定地表, 累积营养, 参与水循环; ④结皮生长的载体, 影响其演替过程; ⑤增加土壤温度、湿度, 加快微生物活动; ⑥结皮形成和生长的参与者; ⑦为节肢动物提供食物, 为昆虫提供适宜的生境; ⑧适度放牧促进结皮发育。
Fig.2 The main ecological function of biological soil crusts
Note: ①Promote plants growth and capture their seeds. ②Reduce wind speed, and provide stable environment for crusts. ③Fix soil surface, accumulate nutriention and attend the water cycle. ④Carrier of crusts growth. and effect it’ s evolution process. ⑤Elevated soil moisture and temperature to quicken it’ s activities. ⑥Participant of crusts formation. and development. ⑦Provide foods for arthropods, and suitable habitat for insects. ⑧Moderate grazing would beneficial to crusts’ growth.

荒漠中的氮主要来自于大气沉降和生物固氮, 其中土壤结皮中的蓝细菌可以固定大气中的氮, 提供荒漠植物和土壤生物重要营养源[65]。北极地区, 与苔藓结皮共生的藻青菌所固定的氮占冻原高山草地氮年固定总量的80%[45]。美国犹他州胶衣属地衣的氮输入量为13 kg· (hm2· a)-1, 相当于无结皮土壤表层氮输入量[1.4 kg· (hm2· a)-1]的10倍[66]。苔藓结皮下土壤氮素转化速率及其对温度的敏感性均高于无结皮土壤, 从而提高土壤的供氮能力, 促进氮素转化与循环, 加快草地土壤的修复[67]

结皮形成过程中, 藻类首先在植物根部出现, 然后具有固氮功能的地衣开始定殖, 改善了土壤的结构和持水力, 为苔藓植物的生长创造了条件[68]。苔藓和地衣植物富集又促进表土的腐殖质累积, 增加钾、钙、镁、磷等元素, 从而提高草地生产力。

3.2 生物土壤结皮与微生物

微生物既是土壤结皮形成的参与者, 反过来又受到结皮发育程度的影响[69]。通过调节土壤的温度和湿度, 生物土壤结皮显著地增加了细菌、放线菌和真菌等的分布, 它的发育也为微生物的生长繁殖创造了良好的条件, 研究表明, 生物土壤结皮类型与土壤微生物生物量密切相关[70, 71], 其微生物活性随着结皮发育而持续增加[72]; 苔藓结皮下土壤微生物量碳氮显著高于其它类型结皮[73]

3.3 生物土壤结皮与植物的相互作用

由于研究区域、植物种类、结皮组成、所受干扰程度和土壤基本情况的复杂性, 生物结皮和种子植物之间的关系尚无定论。一些研究认为, 生物结皮累积了大量植物生长所必需的元素, 促进了植物吸收营养和生长, 而植被能降低风速、形成阴敝而稳定的环境, 从而加快结皮的发育[74]; 但也有研究表明, 苔藓植物迅速吸收养分, 与维管植物竞争资源, 植被与苔藓结皮的盖度呈负相关[75]; 此外有观点认为两者占据着不同的生态位, 没有明显的互惠或竞争关系[76]

除了与植株的直接关系, 生物结皮的粗糙度也直接影响到土壤对种子的捕获能力[77]。荒漠土壤种子库在苔藓结皮上的储量显著高于表面光滑藻类结皮[78], 而种子的萌发与结皮层的含水量存在正相关关系[79]

3.4 生物土壤结皮在水文过程中的作用

草地生物结皮参与的水文过程主要包括降水入渗、凝结水捕获以及蒸发。起伏型结皮可以增加入渗和土壤的含水量, 而光滑型结皮容易造成地表径流[80], 去除生物结皮明显提高水分的入渗率[81]。生物土壤结皮可以对水分再分配, 增加土壤条件的多样性[82]

凝结水是荒漠生态系统持续而稳定的水源, 生物土壤结皮捕获凝结水能够促进有效水分的浅层化和生物量积累, 促进结皮固氮、光合作用和生长, 结皮叶绿素含量与其凝结水捕获能力正相关[83]。藻类结皮对土壤水分蒸发的影响与土壤含水量相关; 土壤含水量较高时, 藻类结皮下土壤的蒸发明显高于无结皮土壤; 土壤变干时, 结皮有效减小蒸发量, 将水分保持在土壤中[84]

3.5 其它

生物土壤结皮对于草地生态系统环境的稳定有重要作用。生物土壤结皮显著降低风和水等对土壤的侵蚀, 结皮稳定地表的能力随着其发育而增强[85, 86]。颜色较深的苔藓和地衣结皮显著降低地表反射率, 吸收更多能量, 提高土壤温度, 加速微生物活动和种子萌发[87]。生物土壤结皮可以维护草地生态系统的土壤食物网, 其发育过程中累积的养分和生物量直接被食草动物、原生动物(变形虫、纤毛虫和鞭毛虫等)、线虫以及节肢动物(螨等)等利用, 调控土壤养分分配和分解[88]

4 展望

作为草地生态系统的结构和功能组分, 生物土壤结皮能够改良土壤, 提高生态系统抵御风水侵蚀的能力, 为维管植物的定居和繁育提供基础条件。20世纪后期以来, 国内开展了多种草地生态系统生物结皮的研究, 揭示了结皮在生态系统的作用和独特的生物多样性, 对于认识景观的功能、结构和反馈机制具有重要作用。以往的研究重点集中在结皮功能和作用的认知上, 对全球变化背景下生物土壤结皮的演变, 及其对生态系统管理的长期反馈等研究较少, 而这些知识是判别草地退化发生和发展及其机理的基础。人类活动对生物土壤结皮的破坏短期内难以通过自然恢复, 适度利用阈值和人工辅助修复土壤结皮的技术对于退化草地治理具有实践意义。生物土壤结皮在区域草地生态系统能量和物质平衡中有重要作用, 利用遥感监测, 建立生物土壤结皮的生态系统管理体系, 预测结皮在区域尺度上的时空变化, 也亟待研究。

The authors have declared that no competing interests exist.

参考文献
[1] Clark C M, Flynn D F B, Butterfield B J. Testing the link between functional diversity and ecosystem functioning in a Minnesota grassland experiment. PloS One, 2012, 7(12): e52821. [本文引用:1]
[2] Zhang J, Liu G, Xu M. Influence of vegetation factors on biological soil crust cover on rehabilitated grassland in the hilly Loess Plateau, China. Environmental Earth Sciences, 2013, 68(4): 1099-1105. [本文引用:1]
[3] Kuske C R, Yeager C M, Johnson S. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrubland s. The ISME Journal, 2012, 6(4): 886-897. [本文引用:1]
[4] 曹广民, 龙瑞军. 三江源“黑土滩”型退化草地自然恢复的瓶颈及解决途径. 草地学报, 2009, 17(1): 4-9.
Cao G M, Long R J. The bottleneck and its resolutions to the natural recovery of black soil type degraded grassland in the Three River Source region. Acta Agrectir Sinica, 2009, 17(1): 4-9. (in Chinese) [本文引用:1]
[5] Belnap J, Lange O L. Biological Soil Crusts: Structure, Function, and Management. 2nd ed. Berlin: Springer-Verlag, 2003. [本文引用:1]
[6] Bowker M A, Maestre F T, Escolar C. Biological crusts as a model system for examining the biodiversity-ecosystem function relationship in soils. Soil Biology&Biochemistry, 2010, 42: 405-417. [本文引用:1]
[7] 李新荣, 张元明, 赵允格. 生物土壤结皮研究: 进展、前沿与展望. 地球科学进展, 2009, 24(1): 11-24.
Li X R, Zhang Y M, Zhao Y G. A study of biological soil crusts: Recent development, trend and prospect. Advances in Earth Science, 2009, 24(1): 11-24. (in Chinese) [本文引用:1]
[8] Vies H. Understand ing dryland land scape dynamics: Do biological crusts hold the key?Geography Compass, 2008, 2(3): 899-919. [本文引用:1]
[9] 侯春梅, 迟秀丽, 黄爱华, 贺郝钰. 国际生物土壤结皮研究发展态势文献计量分析. 生态学报, 2014, 34(4): 1035-1041. [本文引用:1]
[10] Büdel B. Microorganisms of Biological Crusts on Soil Surface. Berlin: Springer-Verlag, 2005: 307-323. [本文引用:1]
[11] 李新荣, 赵洋, 回嵘, 苏洁琼, 高艳红. 中国干旱区恢复生态学研究进展及趋势评述. 地理科学进展, 2014, 33(11): 1435-1443.
Li X R, Zhao Y, Hui R, Su J Q, Gao Y H. Progress and trend of development of restoration ecology research in the arid regions of China. Progress in Geography, 2014, 33(11): 1435-1443. (in Chinese) [本文引用:1]
[12] Belnap J. Gillette D A. Vulnerability of desert soil surfaces to wind erosion: Impact of soil texture and disturbance. Journal of Arid Environments, 1998, 39: 133-142. [本文引用:1]
[13] Concostrina-Zubiri L, Huber-Sannwald E, Martínez I. Biological soil crusts across disturbance-recovery scenarios: Effect of grazing regime on community dynamics. Ecological Applications, 2014, 24(7): 1863-1877. [本文引用:1]
[14] 张元明. 荒漠地表生物土壤结皮的微结构及其早期发育特征. 科学通报, 2005, 15(1): 42-47. [本文引用:1]
[15] 李琳. 松嫩草原藻结皮中蓝藻的物种多样性及藻结皮生态学研究. 长春: 东北师范大学硕士学位论文, 2014.
Li L. Research about ecology and diversity of algae and cyanobacteria crusts in Songnen grassland . Master Thesis. Changchun: Northeast Normal University, 2014. (in Chinese) [本文引用:1]
[16] 杨丽娜, 赵允格, 明姣, 王爱国. 黄土高原不同侵蚀类型区生物结皮中蓝藻的多样性. 生态学报, 2013, 33(14): 4416-4424.
Yang L N, Zhao Y G, Ming J, Wang A G. Cyanobacteria diversity in biological soil crusts from different erosion regions on the Loess Plateau: A preliminary result. Acta Ecologica Sinica, 2013, 33(14): 4416-4424. (in Chinese) [本文引用:1]
[17] Karsten U, Holzinger A. Green algae in alpine biological soil crust communities: Acclimation strategies against ultraviolet radiation and dehydration. Biodiversity and Conservation, 2014, 23(7): 1845-1858. [本文引用:1]
[18] Song Y, Shu W, Wang A. Characters of soil algae during primary succession on copper mine dumps. Journal of Soils and Sediments, 2014, 14(3): 577-583. [本文引用:1]
[19] Kitzing C, Pröschold T, Karsten U. UV-induced effects on growth, photosynthetic performance and sunscreen contents in different populations of the green alga Klebsormidium fluitans (Streptophyta) from alpine soil crusts. Microbial Ecology, 2014, 67(2): 327-340. [本文引用:1]
[20] 吴丽. 地衣结皮形成的生物学过程及其光合生理研究. 北京: 中国科学院研究生院博士学位论文, 2012.
Wu L. On the biological formation process of lichen soil crusts and their photosynthetic physiology. PhD Thesis. Beijing: Chinese Academy of Sciences, 2012. (in Chinese) [本文引用:1]
[21] Obermayer W. Additions to the lichen flora of the Tibetan region. Bibliotheca Lichenologica, 2004, 88: 476-526. [本文引用:1]
[22] Root H T, McCune B. Surveying for biotic soil crust lichens of shrub steppe habitats in the Columbia Basin. North American Fungi, 2012, 7(7): 1-21. [本文引用:1]
[23] 刘萌, 魏江春. 腾格里沙漠沙坡头地区地衣物种多样性研究. 菌物学报, 2013, 32(1): 42-50.
Liu M, Wei J C. Lichen diversity in Shapotou region of Tengger Desert, China. Mycosystema, 2013, 32(1): 42-50. (in Chinese) [本文引用:1]
[24] 闫德仁. 库布齐沙漠生物结皮层的肥岛特征研究. 呼和浩特: 内蒙古农业大学博士学位论文, 2008.
Yan D R. Study on fertile island s features of biological soil crusts in Kubuqi Desert. PhD Thesis. Huhhot: Inner Mongolia Agricultural University, 2008. (in Chinese) [本文引用:1]
[25] 张元明, 曹同, 潘伯荣. 干旱与半干旱地区苔藓植物生态学研究综述. 生态学报, 2002, 22(7): 1129-1134.
Zhang Y M, Cao T, Pan B R. A review on the studies of bryophyte ecology in arid and semi-arid areas. Acta Ecologica Sinica, 2002, 22(7): 1129-1134. (in Chinese) [本文引用:1]
[26] 吉雪花, 张元明, 周小兵, 吴林, 张静. 不同尺度苔藓结皮土壤性状的空间分布特征. 生态学报, 2014, 34(14): 4006-4016.
Ji X H, Zhang Y M, Zhou X B, Wu L, Zhang J. Spatial distribution of soil properties covered by moss crusts on different scales. Acta Ecologica Sinica, 2014, 34(14): 4006-4016. (in Chinese) [本文引用:1]
[27] 徐杰, 白学良, 杨持, 张萍. 固定沙丘结皮层藓类植物多样性及固沙作用研究. 植物生态学报, 2003, 27(4): 545-551.
Xu J, Bai X L, Yang C, Zhang P. Study on diversity and binding-sand effect of moss on biotic crusts of fixed dunes. Acta Phytoecologica Sinica, 2003, 27(4): 545-551. (in Chinese) [本文引用:1]
[28] Jia R, Li X, Liu L. Effects of sand burial on dew deposition on moss soil crust in a revegetated area of the Tennger Desert, Northern China. Journal of Hydrology, 2014, 519: 2341-2349. [本文引用:1]
[29] 郑云普, 赵建成, 张丙昌, 李琳, 张元明. 荒漠生物结皮中藻类和苔藓植物研究进展. 植物学报, 2009, 44(3): 371-378.
Zhao Y P, Zhao J C, Zhang B C, Li L, Zhang Y M. Advances on ecological studies of algae and mosses in biological soil crust. Bulletin of Botany, 2009, 44(3): 371-378. (in Chinese) [本文引用:1]
[30] 苏延桂, 李新荣, 陈应武, 谭会娟, 贾荣亮. 生物土壤结皮对荒漠土壤种子库和种子萌发的影响. 生态学报, 2007, 27(3): 938-945.
Su Y G, Li X R, Chen Y W, Tan H J, Jia R L. Effects of biological soil crusts on soil seed bank and seed germination of desert plants in North China. Acta Ecologica Sinica, 2007, 27(3): 938-945. (in Chinese) [本文引用:1]
[31] 张元明, 王雪芹. 荒漠地表生物土壤结皮形成与演替特征概述. 生态学报, 2010, 30(16): 4484-4492.
Zhang Y M, Wang X Q. Summary on formation and developmental characteristics of biological soil crusts in desert areas. Acta Ecologica Sinica, 2010, 30(16): 4484-4492. (in Chinese) [本文引用:1]
[32] 任继周. 分类、聚类与草地类型. 草地学报, 2008, 16(1): 4-10.
Ren J Z. Classfication and cluster applicable for grassland typeActa Ecologica Sinica, 2008, 16(1): 4-10. (in Chinese) [本文引用:1]
[33] Bragazza L. A decade of plant species changes on a mire in the Italian Alps: Vegetation-controlled or climate-driven mechanisms. Climatic Change, 2006, 77(324): 415-429. [本文引用:1]
[34] Karnieli A, Gabai A, Ichoku C. Temporal dynamics of soil and vegetation spectral responses in a semi-arid environment. International Journal of Remote Sensing, 2002, 23(19): 4073-4087. [本文引用:1]
[35] Housman D C, Powers H H, Collins A D. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. Journal of Arid Environments, 2006, 66(4): 620-634. [本文引用:1]
[36] Lange O L, Kidron G J, Büdel B. Taxonomic composition and photosynthetic characteristics of the ‘biological soil crusts’ covering sand dunes in the Western Negev Desert. Functional Ecology, 1992, 6(5): 519-527. [本文引用:1]
[37] Thompson D B, Walker L R, Land au F H. The influence of elevation, shrub species, and biological soil crust on fertile island s in the Mojave Desert, USA. Journal of Arid Environments, 2005, 61(4): 609-629. [本文引用:1]
[38] 李新荣. 荒漠生物土壤结皮生态与水文学研究. 北京: 高等教育出版社, 2008: 86-125.
Li X R. Eco-hydrology of Biological Soil Crusts in Desert Regions of China. Beijing: Higher Education Press, 2008: 86-125. (in Chinese) [本文引用:1]
[39] 陈亚宁, 李卫红, 张元明, 周智彬, 刘加珍. 新疆古尔班通古特沙漠生物结皮在沙丘尺度的生态与环境解释. 自然科学进展, 2005, 15(10): 1211-1216.
Chen Y N, Li W H, Zhang Y M, Zhou Z B, Liu J Z. The ecological and environmental interpretation of biological crusts of dune scales in Gurbantünggtüt desert, Xinjiang region. Progress in Natural Science, 2005, 15(10): 1211-1216. (in Chinese) [本文引用:1]
[40] Büdel B, Lange O L. The role of cortical and epinecral layers in the lichen genus Peltula. Cryptogamic Botany, 1994, 4: 262-269. [本文引用:1]
[41] Paus S M. Die Erdflechtenvegetion Nordwestdeutschland und einiger Rand gebiete. Bibliotheca Lichenologica, 1997, 66: 12-22. [本文引用:1]
[42] 吴玉环, 高谦, 于兴华. 生物土壤结皮的分布影响因子及其监测. 生态学杂志, 2003, 22(3): 38-42.
Wu Y H, Gao Q, Yu X H. Distribution influencing factors and monitoring of biological soil crusts. Chinese Joural of Ecology, 2003, 22(3): 38-42. (in Chinese) [本文引用:1]
[43] 张元明, 王雪芹. 准噶尔荒漠生物结皮研究. 北京: 科学出版社, 2008: 57-60.
Zhang Y M, Wang X Q. Study on the Biological Soil Crust of the Junggar Desert. Beijing: Science Press, 2008: 57-60. (in Chinese) [本文引用:1]
[44] 程军回, 张元明. 影响生物土壤结皮分布的环境因子. 生态学杂志, 2010, 29(1): 133-141.
Cheng J H, Zhang Y M. Environmental factors affecting soil bio-crust distribution. Chinese Joural of Ecology, 2010, 29(1): 133-141. (in Chinese) [本文引用:1]
[45] 房世波, 冯凌, 刘华杰. 生物土壤结皮对全球气候变化的响应. 生态学报, 2008, 28(7): 3312-3321.
Fang S B, Feng L, Liu H J. Responses of biological soil crusts(BSC) from arid-semiarid habitats and polar region to global climate change. Acta Ecologica Sinica, 2008, 28(7): 3312-3321. (in Chinese) [本文引用:2]
[46] Zhao Y, Li X, Zhang Z. Biological soil crusts influence carbon release responses following rainfall in a temperate desert, northern China. Ecological Research, 2014, 29(5): 889-896. [本文引用:1]
[47] 张鹏, 李新荣, 贾荣亮, 胡宜刚, 黄磊. 湿润持续时间对生物土壤结皮固氮活性的影响. 生态学报, 2011, 35(9): 906-913.
Zhang P, Li X R, Jia R L, Hu Y G, Huang L. Effect of wetting duration on nitrogen fixation of biological soil crusts in Shapotou, Northern China. Acta Ecologica Sinica, 2011, 35(9): 906-913. (in Chinese) [本文引用:1]
[48] 李新荣, 赵洋, 回嵘. 中国干旱区恢复生态学研究进展及趋势评述. 地理科学进展, 2014, 33(11): 1435-1443.
Li X R, Zhao Y, Hui R. Progress and trend of development of restoration ecology research in the arid regions of China. Progress in Geography, 2014, 33(11): 1435-1443. (in Chinese) [本文引用:1]
[49] 朱远达, 蔡强国, 胡霞, 张光远. 土壤理化性质对结皮形成的影响. 土壤学报, 2004, 41(1): 13-19.
Zhu Y D, Cai Q G, Hu X, Zhang G Y. Effects of soil physical and chemical properties on soil crusting. Acta Pedologica Sinica, 2004, 41(1): 13-19. (in Chinese) [本文引用:1]
[50] 詹婧, 阳贵德, 孙庆业. 铜尾矿废弃地生物土壤结皮固氮微生物多样性. 应用生态学报, 2014, 25(6): 1765-1772.
Zhan J, Yang G D, Sun Q Y. Diversity of nitrogen-fixing microorganisms in biological soil crusts of copper mine wasteland s. Chinese Journal of Applied Ecology, 2014, 25(6): 1765-1772. (in Chinese) [本文引用:1]
[51] 王雪芹, 张元明, 王远超, 万金平, 徐曼. 古尔班通古特沙漠生物结皮小尺度分异的环境特征. 中国沙漠, 2006, 26(5): 711-716.
Wang X Q, Zhang Y M, Wang Y C, Wan J P, Xu M. Eco-environment change of biological crusts on longitudinal dune surface in Gurbantünggtüt desert. Journal of Desert Research, 2006, 26(5): 711-716. (in Chinese) [本文引用:1]
[52] Li X R, Zhu L M, Stefan Zerbe, Li X J, Liu L C. Micro-geomorphology determines community structure of biological soil crusts at small scales. Earth Surface Processes and Land forms, 2010, 35(8): 932-940. [本文引用:1]
[53] 吴楠, 张元明, 潘惠霞. 古尔班通古特沙漠地衣结皮对放牧踩踏干扰的小尺度响应. 干旱区研究, 2012, 29(6): 1032-1038.
Wu N, Zhang Y M, Pan H X. Response of fungi-algae symbiotic lichen crusts to grazed livestock disturbance in the Gurbantünggtüt Desert. Arid Zone Research, 2012, 29(6): 1032-1038. (in Chinese) [本文引用:1]
[54] Ford P L, Johnson G V. Effects of dormant- vs. growing-season fire in shortgrass steppe: Biological soil crust and perennial grass responses. Journal of Arid Environments, 2006, 67: 1-14. [本文引用:1]
[55] Warren S D, Clair L L S, Johansen J R. Biological soil crust response to late season prescribed fire in a Great Basin Juniper Woodland . Rangeland Ecology and Management, 2015, 68(3): 241-247. [本文引用:1]
[56] 王建兵, 张德罡, 曹广民, 田青. 青藏高原高寒草甸退化演替的分区特征. 草业学报, 2013, 22(2): 1-10.
Wang J B, Zhang D G, Cao G M, Tian Q. Regional characteristics of the alpine meadow degradation succession on the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2013, 22(2): 1-10. (in Chinese) [本文引用:1]
[57] Bowker M A, Maestre F T, Mau R L. Diversity and patch-size distributions of biological soil crusts regulate dryland ecosystem multifunctionality. Ecosystems, 2013, 16(6): 923-933. [本文引用:1]
[58] 侯扶江, 徐磊. 生态系统健康的研究历史与现状. 草业学报, 2009, 18: 210-225.
Hou F J, Xu L. History and current situation of ecosystem health research. Acta Prataculturae Sinica, 2009, 18: 210-225. (in Chinese) [本文引用:1]
[59] 肖波, 赵允格, 邵明安. 黄土高原侵蚀区生物结皮的人工培育及其水土保持效应. 草地学报, 2008, 16(1): 28-33.
Xiao B, Zhao Y G, Shao M A. Artificial cultivation of biological soil crust and its effects on soil and water conservation in water-winderosion crisscross region of Loess Plateau, China. Acta Agrectir Sinica, 2008, 16(1): 28-33. (in Chinese) [本文引用:1]
[60] 陈正宏. 高寒草甸沙化过程中生物结皮藻类组成及分布的变化. 兰州: 兰州理工大学硕士学位论文, 2009.
Chen Z H. Study on algae biological crust composition and distribution changes in the desertification process of alpine meadow. Master Thesis. Lanzhou: Lanzhou University of Technology, 2009. [本文引用:1]
[61] 吴玉环, 高谦, 程国栋. 生物土壤结皮的生态功能. 生态学杂志, 2002, 21(4): 41-45.
Wu Y H. Gao Q, Cheng G D. Ecological function of biological soil crusts. Chinese Journal of Ecology, 2002, 21(4): 41-45. (in Chinese) [本文引用:1]
[62] 张元明, 杨维康, 王雪芹, 张道远. 生物结皮影响下的土壤有机质分异特征. 生态学报, 2005, 25(12): 3420-3425.
Zhang Y M, Yang W K, Wang X Q, Zhang D Y. Influence of cryptogamic soil crusts on accumulation of soil organic matter in Gurbantünggtüt Desert, northern Xinjiang, China. Acta Ecologica Sinica, 2005, 25(12): 3420-3425. (in Chinese) [本文引用:1]
[63] Gornall J L, Jónsdóttir I S, Woodin S J. Arctic mosses govern below-ground environment and ecosystem processes. Oecologia, 2007, 153: 931-941. [本文引用:1]
[64] 李玉强, 赵哈林, 赵玮, 云建英, 王少昆. 生物结皮对土壤呼吸的影响作用初探. 水土保持学报, 2008, 22(3): 106-109.
Li Y Q, Zhao H L, Zhao W, Yun J Y, Wang S K. The influence of soil bio-crust on soil respiration. Journal of Soil and Water Conservation, 2008, 22(3): 106-109. (in Chinese) [本文引用:1]
[65] 张鹏, 李新荣, 张志山, 潘艳霞, 刘艳梅, 苏洁琼. 腾格里沙漠东南缘生物土壤结皮的固氮潜力. 应用生态学报, 2012, 23(8): 2157-2164.
Zhang P, Li X R, Zhang Z S, Pan Y X, Liu Y M, Su J Q. Nitrogen fixation potential of biological soil crusts in southeast edge of Tengger Desert, Northwest China. Chinese Journal of Applied Ecology, 2012, 23(8): 2157-2164. (in Chinese) [本文引用:1]
[66] Belnap J. Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biology and Fertility of Soils, 2002, 35(2): 128-135. [本文引用:1]
[67] Hu R, Wang X P, Pan Y X, Zhang Y F, Zhang H. The response mechanisms of soil N mineralization under biological soil crusts to temperature and moisture in temperate desert regions. European Journal of Soil Biology, 2014, 62: 66-73. [本文引用:1]
[68] Chamizo S, Cantón Y, Miralles I, Domingo F. Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biology and Biochemistry, 2012, 49: 96-105. [本文引用:1]
[69] 吴楠, 潘伯荣, 张元明. 土壤微生物在生物结皮形成中的作用及生态学意义. 干旱区研究, 2004, 21(4): 444-448.
Wu N, Pan B R, Zhang Y M. Effects and ecological significance of soil-inhabiting microorganisms in the formation of biological soil crusts. Arid Zone Research, 2004, 21(4): 444-448. (in Chinese) [本文引用:1]
[70] 张如强. 库布齐沙漠生物结皮层土壤微生物动态及其与油蒿发育的相关性研究. 呼和浩特: 内蒙古大学硕士学位论文, 2009.
Zhang R Q. The dynamic study on soil microorganism of bioiogical soil crusts and its correlation with development of Artemisia ordosica in Kubuqi Desert. Master Thesis. Huhhot: Inner Mongolia University, 2009. [本文引用:1]
[71] 刘艳梅, 杨航宇, 李新荣. 生物土壤结皮对荒漠区土壤微生物生物量的影响. 土壤学报, 2014, 5(12): 394-401.
Liu Y M, Yang H Y, Li X R. Effects of biological soil crusts on soil microbial biomass in desert area. Acta Pedologica Sinica, 2014, 5(12): 394-401. (in Chinese) [本文引用:1]
[72] Yu J, Kidron G J, Pen-Mouratov S, Wasserstrom H, Barness G, Steinberger Y. Do development stages of biological soil crusts determine activity and functional diversity in a sand -dune ecosystem. Soil Biology and Biochemistry, 2012, 51: 66-72. [本文引用:1]
[73] Navarro-Noya Y E, Jiménez-Aguilar A, Valenzuela-Encinas C. Bacterial communities in soil under moss and Lichen-moss crusts. Geomicrobiology Journal, 2014, 31(2): 152-160. [本文引用:1]
[74] 王蕊, 朱清科, 赵磊磊, 常存, 马浩. 黄土高原生物土壤结皮对植物种子出苗和生长的影响. 干旱区研究, 2011, 28(5): 801-807.
Wang R, Zhu Q K, Zhao L L, Chang C, Ma H. Effects of biological soil crusts on seed emergence and seedling growth in Loess Plateau, North Shaanxi Province. Arid Zone Research, 2011, 28(5): 801-807. (in Chinese) [本文引用:1]
[75] 李新荣, 张景光, 王新平, 刘立超, 肖洪浪. 干旱沙漠区土壤微生物结皮及其对固沙植被影响的研究. 植物学报, 2000, 42(9): 965-970.
Li X R, Zhang J G, Wang X P, Liu L C, Xiao H L. Study on soil microbiotic crust and its influences on sand -fix invegetation in arid desert region. Acta Botanica Sinica, 2000, 42(9): 965-970. (in Chinese) [本文引用:1]
[76] 李国栋, 张元明. 生物土壤结皮与种子附属物对4种荒漠植物种子萌发的交互影响. 中国沙漠, 2014, 34(3): 725-731.
Li G D, Zhang Y M. Interactive effects of biological soil crusts and seed appendages on seed germination of four desert species. Journal of Desert Research, 2014, 34(3): 725-731. (in Chinese) [本文引用:1]
[77] Li X R, Jia X H, Long L Q. Effects of biological soil crusts on seed bank, germination and establishment of two annual plant species in the Tengger Desert. Plant and Soil, 2005, 277: 375-385. [本文引用:1]
[78] Eldridge D J, Zaady E, Shachak M. Infiltration through three contrasting biological soil crusts in patterned land scapes in the Negev, Israel. Catena, 2000, 40(3): 323-336. [本文引用:1]
[79] Pand o-Moreno M, Molina V, Jurado E. Effect of biological soil crusts on the germination of three plant species under laboratory conditions. Botanical Sciences, 2014, 92(2): 273-279. [本文引用:1]
[80] Wang X P, Li X R, Xiao H L. Effects of surface characteristics of infiltration pattern in an arid shrub desert. Hydrological Processes, 2007, 21: 72-79. [本文引用:1]
[81] 王方琳, 张锦春, 纪永福, 陈芳, 丁峰, 刘有军, 王吉金. 不同结皮破坏对退化梭梭林地土壤水分及梭梭生长的影响. 草原与草坪, 2011, 31(4): 56-60.
Wang F L, Zhang J C, Ji Y F, Chen F, Ding F, Liu Y J, Wang J J. Effects of soil crust breaking on soil moisture and growth of degraded Haloxylon ammodendron community. Grassland and Turf, 2011, 31(4): 56-60. (in Chinese) [本文引用:1]
[82] Gao S, Pan X, Cui Q. Plant interactions with changes in coverage of biological soil crusts and water regime in Mu Us Sand land , China. PloS One, 2014, 9(1): e87713. [本文引用:1]
[83] 潘颜霞, 王新平, 张亚峰, 虎瑞. 沙坡头地区吸湿凝结水对生物土壤结皮的生态作用. 应用生态学报, 2013, 24(3): 653-658.
Pan Y X, Wan X P, Zhang Y F, Hu R. Ecological effect of hygroscopic and condensate water on biological soil crusts in Shapotou region of China. Chinese Journal of Applied Ecology, 2013, 24(3): 653-658. (in Chinese) [本文引用:1]
[84] 王翠萍, 周欢水, 廖超英, 孙长忠, 韩小红. 藻类结皮对黄土高原地区土壤蒸发过程的影响. 西北林学院学报, 2011, 26(6): 8-13.
Wang C P, Zhou H S, Liao C Y, Sun C Z, Han X H. Effects of soil algae crust on soil evaporation in the Loess Plateau. Journal of Northwest Forestry University, 2011, 26(6): 8-13. (in Chinese) [本文引用:1]
[85] 王雪芹, 张元明, 张伟民, 韩致文. 古尔班通古特沙漠生物结皮对地表风蚀作用影响的风洞实验. 冰川冻土, 2004, 26(5): 632-638.
Wang X Q, Zhang Y M, Zhang W M, Han Z W. Wind tunnel experiment of biological crust effect on wind erodibility of sand surface in Gurbantünggtüt desert, Xinjiang. Journal of Glaciology and Geocryology, 2004, 26(5): 632-638. (in Chinese) [本文引用:1]
[86] 倪含斌, 张丽萍, 蔡甫款. 生物土壤结皮对土壤水蚀影响的模拟试验研究. 科技通报, 2012, 28(11): 216-219.
Ni H B, Zhang L P, Cai F K. Experimental study on impact of soil microbiotic crust on soil erosion in Shen-Dong Mine region. Bulletin of Science and Technology, 2012, 28(11): 216-219. (in Chinese) [本文引用:1]
[87] 包艳丽, 刘左军. 生物土壤结皮的研究进展. 安徽农业科学, 2011, 39(8): 4667-4668, 4691.
Bao Y L, Liu Z J. The research of biological soil crust. Journal of Anhui Agricultural Sciences, 2011, 39(8): 4667-4668, 4691. (in Chinese) [本文引用:1]
[88] Whitford W G. The importance of the biodiversity of soil biota in arid ecosystems. Biodiversity and Conservation, 1996, 5(2): 185-195. [本文引用:1]