种子激素引发
韩云华, 王彦荣, 陶奇波
草地农业生态系统国家重点实验室 兰州大学草地农业科技学院,甘肃 兰州 730020
韩云华(1985-),男,河北张家口人,讲师,博士,主要从事牧草种子生产和种子生态研究。Email:hanyh@lzu.edu.cn
摘要

种子激素引发(Hormonal priming)是种子引发(Seed priming)的一种。通过激素引发可以有效改善种子萌发状态,促进幼苗生长和产量提高,并增强植物的抗逆性。本文针对近年来植物激素引发的研究情况,介绍了激素引发在促进种子萌发和幼苗生长中的应用,论述了其对植物生长发育的有利影响。并从植物生理生化与分子生物学两个方面阐述了种子激素引发的机理。同时,对影响引发效果的因素进行了分析,指出种子引发的浓度与引发时间、种子引发后的回干条件是影响引发效果的最重要因素。未来的研究应充分借助基因组学与蛋白质组学等方法,深入探究种子激素引发的生理生化与分子生物学机理,并加强在草类植物中的研究。

关键词: 种子引发; 激素; 抗逆性; 萌发; 产量
中图分类号:S330 文献标志码:A 文章编号:1001-0629(2016)12-2494-09 doi: 10.11829/j.issn.1001-0629.2015-0726
Advances of seed hormonal priming
Han Yun-hua, Wang Yan-rong, Tao Qi-bo
State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
Corresponding author:Han Yun-hua E-mail:hanyh@lzu.edu.cn
Abstract

Hormonal priming is an important component of seed priming. It has great significance for seed germination, seedling growth, stress tolerance and yield increase. Based on the current research situation, we summarized the concept and application range of hormonal priming, illustrated the positive effects of hormonal priming on plant growth. Furthermore, biochemistry and molecular mechanism of seed hormonal priming were explained. In addition, we pointed out that hormonal concentration, priming time and drying conditions are the most important factors that constraint the priming effect. To improve the research in the future, priming mechanism should be intensively studied based on the genomics and proteome approach, and increase the use of hormonal priming in grass species.

Keyword: seed priming; hormonal; stress tolerance; germination; yield

种子引发(seed priming)是以水分为基础的播前处理技术, 通过控制种子吸水, 激活种子萌发早期的新陈代谢过程, 然后及时脱水, 阻止其进入完全萌发状态[1]。根据引发物质不同, 种子引发的方法包括水引发(hydroproming)[2]、渗透引发(osmopriming)[3]、生物引发(biopriming)[4]、营养引发(nutrient priming)[5]、化学物质引发(chemical priming)[6]和激素引发(hormonal priming)[7]等(表1)。

表1 几种常见种子引发技术的比较 Table 1 Comparison of several common seed priming technology

国内外有关引发的研究已经有很多[8, 9, 10, 11, 12, 13, 14, 15, 16], 但是针对种子引发中激素的应用及其原理还未见系统评述。本文从种子引发中激素的应用、激素引发的生理生化基础和影响激素引发等方面论述了近年来的成果。

激素作为一种参与种子萌发、植株生长的信号小分子物质, 即使在植物体内浓度极小甚至趋近于0时仍有非常重要的作用[9]。种子激素引发是利用一定浓度的激素进行浸种, 并精确控制温度和时间, 达到促进萌发且不引起伤害的技术。种子激素引发的主要作用包括以下几点:1)提高种子活力, 即提高种子的发芽率、发芽速度以及整齐度; 2)提高幼苗抗逆性; 3)打破种子休眠; 4)在一定程度上恢复种子活力。目前已有报道的激素种类有赤霉素(GA)[7]、脱落酸(ABA)[17]、油菜素内酯(BR)[18]、5-氨基乙酰丙酸(ALA)[19]、细胞分裂素(CTK)[20]等。通过播前激素引发, 可有效改善种子质量, 提高抗逆性, 促进产量增加[9, 21, 22], 而且可以增加豆科植物种子维生素含量和营养价值[23]

1 种子激素引发的应用

激素引发是种子引发技术的一种, 广泛应用于农业生产中, 早在20世纪50年代, 已有学者利用赤霉素引发豌豆(Pisum sativum)种子, 以提高其出苗能力与幼苗长势[24]; 20世纪70年代亦有研究人员发现赤霉素引发可以提高洋葱种子的萌发率[25]。经过半个多世纪的发展, 激素引发已经广泛应用于农林业生产。另外, 由于激素参与调节植物生长、发育和繁殖等生长过程, 激素引发还可以改善植物抗逆性, 增加其产量。

1.1 改善种子萌发状态

种子萌发过程伴随着众多生理生化过程, 激素引发是在水引发的基础上加入外源植物激素, 达到打破休眠、促进萌发和缓解老化活力丧失的作用。赤霉素类激素(GAs)是目前引发中应用最广的一类植物激素。近年来, 在小麦(Triticu maestivum)[26]、大麦(Hordeum vulgare)[27]、燕麦(Avena sativa)[28]、番茄(Lycopersicon esculentum)[29]、大白菜(Brassica rapa)[30]、向日葵(Helianthus annuus)[31]、苜蓿(Medicago sativa)[32, 33]等植物中, 科研人员通过控制赤霉素浓度、引发时间和引发温度等因素, 发现GAs引发可增加种子吸水量, 提高种子活力、发芽率、发芽指数、发芽速率, 并显著降低电导率、起始发芽时间、50%发芽时间和平均发芽时间。表2展示了几种常见植物在激素引发下的萌发状况。

表2 几种植物在激素引发下的萌发率 Table 2 Germination percentage of several plants as influenced by hormone priming

除GAs外, 其它一些植物激素也被证明具有促进萌发的作用。雀麦(Bromu sinermis)种子人工老化后, 利用生长素(NAA)引发, 可提高出苗率、幼苗活力、幼苗生长速率、根长、芽长和幼苗高度[35]。利用24-表油菜素内酯(24-epibrassinolide)滚筒引发后的铃椒(Capsicum annuum)种子表现出明显的发芽和生长优势[36]

1.2 促进幼苗生长和提高产量

除影响种子萌发以外, 激素引发的影响效果会延续至幼苗生长甚至到产量形成时期。众多研究结果表明, GAs引发可提高出苗率、出苗整齐度、根系长度、幼苗根系活力、幼苗干重、叶片中叶绿素含量和植株高度[27, 28, 33, 37, 38, 39]。但是, 也有研究表明GA3引发效果不如水引发, 利用GA3和水引发生菜(Iceberg lettuce)种子, 盐胁迫处理15 d后, GA3处理的幼苗干重小于水引发处理[40]

其它植物激素也有类似效果。如CTK可增加幼苗叶面积[30]。BR可降低种子电导率, 增加幼苗叶绿素含量[41]。在200 mmol· L-1 NaCl胁迫下, 水杨酸引发后的甜高粱(Sorghum bicolor)种子可分别提高出苗率、出苗速率、叶绿素b和蛋白含量82%, 130%、7.9%和1.9%。在37 ℃下, 出苗率、出苗速率和根数增加了72.5%、108.5%和63.8%, 同时丙二醛(MDA)含量降低了17.6%[42]。植物激素引发可提高种子产量。GA3可显著提高小扁豆(Lens culinaris)产量因子和种子产量[35], CTK引发后两个品种的小麦产量均得到了提高[43, 44] (表3)。

表3 激素引发对几种植物株高的影响 Table 3 Effects of seed priming on plant height of several plants
1.3 抗逆应用

激素引发可有效提高抗氧化酶系统活性, 进而提高幼苗抗逆特性[45, 48]。GA3可以显著提高干旱胁迫下油菜种子的发芽率, 也可显著提高幼苗抗旱性, 引发后种苗鲜重和下胚轴长度均有所增加[49]。研究发现, GA3引发可显著提高耐盐油菜品种在盐胁迫条件下的表现, 但是对不耐盐品种油菜影响不显著[50]。脱落酸(ABA)是GA的拮抗激素, 可增加种子休眠。近些年研究发现, ABA引发可在一定程度上缓解小麦水淹和干旱胁迫[51], 也可提前出苗时间、提高出苗率、缩短出苗期[52]

除了GAS和ABA以外, 其它植物激素引发也会增加幼苗一定程度的抗逆能力。细胞分裂素(CTK)引发后, 植株内ABA含量降低, 提高了小麦抗盐能力[43], 在50%田间持水量下, BR引发后的植株有较高的叶水势且积累更多的CO2, 提高了水稻抗旱性[52]。ALA与KNO3配合引发红辣椒, 可显著提高种子在低温条件下(15 ℃)的表现, 发芽率、发芽速率均得到显著提高。种子贮藏一个月后(4 ℃或25 ℃), 引发效果依然很好[53]

2 种子激素引发的生理生化基础
2.1 细胞膜修复

细胞膜是植物细胞的基本功能单位, 对细胞具有保护作用。种子活力丧失往往伴随着细胞膜的损伤, 而引发可在一定程度上对损伤的细胞膜进行修复。研究发现, GA3引发后油菜种子电导率低于未被引发的, 且植株细胞受到盐胁迫损伤程度较低[54]

2.2 改变细胞膜离子通透性

激素引发还可改变细胞膜对离子的选择性, 进而增加植物抗逆特性。GA3引发可降低盐胁迫下小麦芽部和根部的钠离子含量, 提高钙离子和钾离子含量, 并提高水杨酸(SA)含量, 降低ABA和聚胺类物质(腐胺Put和亚精胺Spd)含量, 进而提高其抗逆能力, 促进种子产量的提高[45]。水杨酸和抗坏血酸引发可降低小麦幼苗中钾离子含量, 增加可溶性糖含量[55]。生长素(NAA)也有类似的效果[56]

2.3 激活抗氧化系统

激素引发可促进植株内抗氧化系统水平提升[32]。ABA引发的小麦种子受到干旱胁迫后, 可显著提高超氧化物歧化酶(SOD)和过氧化物酶(POD)活性, 且细胞内相对含水量显著增加[57]。GA3引发后的油菜幼苗受到干旱胁迫后, 中可溶性糖、可溶性蛋白和自由脯氨酸均显著提高, 而丙二醛(MDA)含量下降, 抗氧化系统酶(如SOD, CAT, POD)水平升高[49]

3 种子激素引发的分子生物学基础
3.1 大分子物质修复

DNA修复是种子萌发前重要的阶段, 可以避免种子萌发所需蛋白的错配, 促进种子迅速而整齐的萌发。研究者利用qRT-PCR激素研究了7个与DNA修复有关的基因(GTF Ⅱ H2, MMZ3/UVE 1C, RAD3, Rec A-like1, RAD54, U DNA glycosylaseKU80)在种子引发后的表达情况, 发现这些基因表达量会上调, 但是受引发方法影响较大[58]。细胞学研究发现, ABA引发可触发DNA修复机制, 降低细胞第1次有丝分裂过程中染色体畸变频率[59, 60]

3.2 促进特定基因表达

引发后种子在逆境条件下可促进某些特定基因表达, 增强植物抗逆能力。外源ABA引发后, 降低了cDNA克隆BnCAM1表达量, 过量表达钙调蛋白, 促进种子萌发早期新陈代谢酶类合成, 在非生物胁迫条件下(干旱、低温和盐胁迫), 使发芽时间提前2~7 d, 且提高了发芽率[34]。研究发现, 水孔蛋白基因BnPIP1编码的蛋白与种子萌发早期营养物质酶代谢中水分专业有关, ABA引发可促进基因BnPIP1表达上调, 且基因表达时间提前, 促进种子萌发[61]

4 影响种子激素引发的因素

种子引发涉及的生理生化、分子生物学过程很多。最直接影响激素引发的因素主要有引发时间、激素浓度、引发温度和回干条件等。

4.1 引发时间和温度

激素引发本质上是液体引发的一种, 且激素浓度都极低, 溶液渗透势高, 种子易发生吸涨伤害。因此, 要适当控制引发时间和温度, 以便达到最佳的引发效果而不引起吸涨伤害。目前研究中引发时间普遍在6~24 h[26, 28, 32, 36, 37, 40, 55]。也有一些物种处理比较特殊, 如用366 mg· kg-1GA3引发1 h显著促进白花蛇舌草(Hedyotis diffusa)种子萌发, 提高干旱条件下种子的发芽率、发芽指数、活力指数并促进幼苗的生长[62]。Wagner等[63]在研究10种牧草种子引发试验中将种子在15 ℃下引发14 d。有报道称, 引发在低温下效果较好, 且最佳温度在15~20 ℃[61]。但是, 也有研究采用高于20 ℃作为激素引发的温度[38, 64, 65, 66]

4.2 激素浓度

浓度是影响引发效果的一个重要因素, 但是不同物种间以及不同引发剂间最佳浓度各异。GAs是一类最常用的种子引发激素, 其浓度在不同物种间差异较大。盐胁迫条件下, 20 mg· L-1 GA3引发小麦种子后发芽率最高[67]。在干旱胁迫条件下, 用0.5 mmol· L-1 GA3引发48 h处理北青兰(Dracocephalum argunense)效果最好[68]。利用300 mg· L-1 GA3引发油菜种子可显著提高其幼苗抗旱性, 提高幼苗鲜重和下胚轴长[48]

不同引发物的引发浓度也有较大差异。利用SA浓度50 mg· g-1引发春玉米, 可显著提高生物量、种子产量和收获指数[40]; ABA 浓度 10~6 mol· L-1处理小麦种子效果较好[56]。50 mg· L-1的NAA干旱条件下高冰草(Thinopyrum ponticum)发芽率增加了18%[44], 而NAA 150 mg· L-1引发对小麦生长和种子产量增加最为有利[55]

4.3 种子回干

实际应用中, 种子经过激素引发后, 一般需要经过表面回干或者完全回干后储藏, 待田间条件合适后进行播种。因此, 引发后的回干参数相当重要。对KNO3引发后的西瓜(Citrullus lanatus)种子设置了不同的回干处理, 研究其对抗氧化酶活性和发芽率的影响, 发现室内缓慢回干效果最好[69]。研究发现, 回干时间和回干温度对羊草(Leymus chinensis)和无芒雀麦(Bromus inermis)的发芽率和发芽指数都有影响, 羊草种子能忍受长时间的低温回干(20 ℃, 20 d), 无芒雀麦种子能忍受短时间的高温回干(30 ℃, 1~10 d)[70]

5 展望

种子的激素引发技术的研究已有数十年历史, 研究的内容也从种子萌发、植株生长和生产性能观测深入到生理机制、信号通路和分子机理的研究。相对于蔬菜、花卉和农作物而言, 由于多年来对牧草种子的重视程度不够, 加之激素引发成本较高, 牧草种子中激素引发的研究应用还较少。牧草种子具有种类繁多、特性各异、野生性状强等特征, 未来的研究应集中在有应用价值的栽培草种和野生草种中, 在继续筛选高效、廉价的植物激素的同时, 加强牧草种子引发的生理机制和分子机理研究。同时, 可借助蛋白组学和基因组学等研究方法, 分析激素引发的种子和未引发种子在萌发、幼苗生长、植株抗逆、产量形成和内源激素信号转导过程中的基因表达差异、代谢差异、生化过程差异, 进而对引发的机理形成更加深入的理解[71, 72, 73, 74, 75]

虽然已经出现了一些多种物质配合引发种子的研究, 如先利用PEG引发, 再用GA3引发, 效果要比二者同时使用和先GA3后PEG好[76]。但是大多数研究依然采用单一引发物质或方法, 采取多种引发物质或者不同引发方法结合研究还较为少见。除此以外, 当前研究主要集中在引发后种子的萌发效果方面, 有关引发后回干的相关研究较少。不同的回干方法对种子失水速率影响很大, 进而影响种子引发效果。因此, 对引发后回干技术进行研究对于提高引发效果有积极意义。

The authors have declared that no competing interests exist.

参考文献
[1] Paparella S, Araujo S S, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A. Seed priming: State of the art and new perspectives. Plant Cell Reports, 2015, 34(8): 1281-1293. [本文引用:1]
[2] 闵丹丹, 范燕, 郭正刚, 胡小文. 紫花苜蓿种子水引发条件的优化. 草业科学, 2016, 33(4): 669-673.
Min D D, Fan Y, Guo Z G, Hu X W. Optimization of seed hydropriming conditions for Medicago sativa. Pratacultural Science, 2016, 33(4): 669-673. (in Chinese) [本文引用:1]
[3] 孙园园, 孙永健, 王明田, 李旭毅, 郭翔, 胡蓉, 马均. 种子引发对水分胁迫下水稻发芽及幼苗生理性质的影响. 作物学报, 2010, 36(11): 1931-1940.
Sun Y Y, Sun Y J, Wang M T, Li X Y, Guo X, Hu R, Ma J. Effects of seed priming on germination and seedling growth of rice under water stress. Acta Agronomica Sinica, 2010, 36(11): 1931-1940. (in Chinese) [本文引用:1]
[4] 侯红利, 李健强, 周向阳. 黄瓜种子生防菌引发处理研究现状. 种子科技, 2008, 26(3)36-38. [本文引用:1]
[5] 杨小环, 马金虎, 郭数进, 李新基, 李盛. 种子引发对盐胁迫下高粱种子萌发及幼苗生长的影响. 中国生态农业学报, 2011, 19(1): 103-109.
Yang X H, Ma J H, Guo S J, Li X J, Li S. Effect of seed priming on sorghum( Sorghum bicolor L. )seed germination and seedling growth under salt stress. Chinese Journal of Eco-Agriculture, 2011, 19(1): 103-109. (in Chinese) [本文引用:1]
[6] 张菊平, 张艳敏, 康业斌, 张兴志. 硝酸钾处理对不同贮藏年限辣椒种子发芽的影响. 种子, 2005, 24(4): 28-30.
Zhang J P, Zhang Y M, Kang Y B, Zhang X Z. Effects of KNO3 treatment on germination of pepper seeds of different storage time. Seed, 2005, 24(4): 28-30. (in Chinese) [本文引用:1]
[7] 温福平, 张檀, 张朝晖, 潘映红. 赤霉素对盐胁迫抑制水稻种子萌发的缓解作用的蛋白质组分析. 作物学报, 2009, 35(3): 483-489.
Wen F P, Zhang T, Zhang Z H, Pan Y H. Proteome analysis of relieving effect of gibberellin on the inhibition of rice seed germination by salt stress. Acta Agronomica Sinica, 2009, 35(3): 483-489. (in Chinese) [本文引用:2]
[8] Jisha K C, Vijayakumari K, Puthur J T. Seed priming for abiotic stress tolerance: An overview. Acta Physiologiae Plantarum, 2013, 35(5): 1381-1396. [本文引用:1]
[9] 李振华, 王建华. 种子活力与萌发的生理与分子机制研究进展. 中国农业科学, 2015, 48(4): 646-660.
Li Z H, Wang J H. Advances in research of physiological and molecular mechanism in seed vigor and germination. Scientia Agricultura Sinica, 2015, 48(4): 646-660. (in Chinese) [本文引用:3]
[10] 李盈. 种子引发技术的研究进展. 甘肃农业科技, 2014(8): 57-60. [本文引用:1]
[11] 李涵, 王志伟, 童龙, 闵子扬, 孙小武, 成娟. 无籽西瓜种子引发研究进展. 中国瓜菜, 2014, 27(4): 1-5.
Li H, Wang Z W, Tong L, Min Z Y, Sun X W, Cheng J. Progresses of triploid watermelon seed priming. China Cucurbits and Vegetables, 2014, 27(4): 1-5. (in Chinese) [本文引用:1]
[12] 马多结吉, 王永超. 种子引发技术的研究进展. 种子, 2013, 32(12): 43-46.
Maduojieji, Wang Y C. Study progress of seed priming techniques. Seed, 2013, 32(12): 43-46. (in Chinese) [本文引用:1]
[13] 赵玥, 辛霞, 王宗礼, 卢新雄. 种子引发机理研究进展及牧草种子引发研究展望. 中国草地学报, 2012, 34(3): 102-108.
Zhao Y, Xin X, Wang Z L, Lu X X. Study progress and prospects in the mechanism of seed priming. Chinese Journal of Grassland , 2012, 34(3): 102-108. (in Chinese) [本文引用:1]
[14] 李皓, 李传中, 曾瑞珍, 张志胜. 种子引发技术研究进展. 热带农业工程, 2012, 36(3): 20-23.
Li H, Li C Z, Zeng R Z, Zhang Z S. Research advances on seed priming technology. Tropical Agricultrual Engineering, 2012, 36(3): 20-23. (in Chinese) [本文引用:1]
[15] 黄淑贤. 种子引发提高植物耐盐性的研究进展. 河北农业科学, 2010(7): 54-55, 67.
Huang S X. Research progress on plant salt tolerance by seed priming. Journal of Heibei Agricultural Sciences, 2010(7): 54-55, 67. (in Chinese)
[16 马瑞霞, 王彦荣. 种子水引发的研究进展. 草业学报, 2008, 17(6): 141-147.
Ma R X, Wang Y R. Advances in seed hydro-priming research. Acta Pratacultruae Sinica, 2008, 17(6): 141-147. (in Chinese) [本文引用:1]
[17] 张翔, 项超, 刘金师, 张奎, 黄贯刘, 康圣好. 脱落酸对水稻种子萌发的影响. 安徽农业科学, 2015, 43(35): 73-74.
Zhang X, Xiang C, Liu J S, Zhang K, Huang G L, Kang S H. Effect of the exogenous plant hormone ABA on the germination of rice seeds. Journal of Anhui Agricultural Sciences, 2015, 43(35): 73-74. (in Chinese) [本文引用:1]
[18] 张学明, 李彩艳, 郭秋香, 丁海麦. 水杨酸和油菜素内酯对黄芪种子萌发的影响. 黑龙江农业科学, 2015(3): 32-33.
Zhang X M, Li C X, Guo Q X, Ding H M. Effects of salicylic acid and brassinolide on seed germination of Astragalus membranaceus. Heilongjiang Agricultural Sciences, 2015(3): 32-33. (in Chinese) [本文引用:1]
[19] 蒋丽阳, 曹腾, 瓮强, 许锋, 程水源. ALA与GA3对夏枯草种子发芽特性的影响. 种子, 2011, 30(12): 88-89.
Jiang L Y, Cao T, Weng Q, Xu F, Cheng S Y. Effect of ALA and GA3 on seed germination characteristic of selfheal. Seed, 2011, 30(12): 88-89. (in Chinese) [本文引用:1]
[20] 郭伦发, 何金祥, 王新桂, 周浩. 不同处理方法对石栗种子发芽率及发芽势的影响. 广东农业科学, 2010(4)34-38.
Guo L F, He J X, Wang X G, Zhou H. Effects of different treatments on germination percentage and germination energy of Aleurites moluccana seeds. Guangdong Agricultural Sciences, 2010(4): 34-38. (in Chinese) [本文引用:1]
[21] Soltani E, Soltani A. Meta-analysis of seed priming effects on seed germination, seedling emergence and crop yield: Iranian studies. International Journal of Plant Production, 2015, 9(3): 413-432. [本文引用:1]
[22] 郭慧琴, 任卫波, 李平, 武自念, 万东莉. 2, 4-表油菜素内酯和赤霉素互作对羊草种子萌发及幼苗生长的影响. 草业科学, 2014, 31(6): 1097-1103.
Guo H Q, Ren W B, Li P, Wu Z N, Wan D L. Effect of epi-brassinosteroid and gibberellin on seed germination and seedling growth of Leymus chinensis. Pratacultural Science, 2014, 31(6): 1097-1103. (in Chinese) [本文引用:1]
[23] Janeczkol A, Dziurka M, Ostrowskal A, Biesaga-Koscielniale J, Koscielniak J. Improving vitamin content and nutritional value of legume yield through water and hormonal seed priming. Legume Research, 2015, 38(2): 185-193. [本文引用:1]
[24] Brian P W, Hemming H G. The effect of gibberellic acid on shoot growth of pea seedlings. Physiologia Plantarum, 1955, 8(3): 669-681. [本文引用:1]
[25] Sosa K. Studies on physiological and biochemical aspects of seed priming in onion ( Allium cepa L. ). Annales De Linstitut Pasteur, 1971, 120(3): 292-312. [本文引用:1]
[26] Chauhan D S, Deswal D P. Effect of ageing and priming on vigour parameters of wheat ( Triticum aestivum). Indian Journal of Agricultural Sciences, 2013, 83(11): 1122-1127. [本文引用:2]
[27] Atar B, Kara B. Efficiency of some seed priming in different soil moisture contents in wheat and barley. Tarim Bilimleri Dergisi-Journal of Agricultural Sciences, 2015, 21(1): 93-99. [本文引用:2]
[28] Verma R, Vijay D, Gupta C K, Malaviya D R. Seed quality enhancement of oat ( Avena sativa L. ) varieties through priming. Range Management and Agroforestry, 2014, 35(1): 144-150. [本文引用:3]
[29] Finchsavage W E, McQuistan C I. Abscisic acid: An agent to advance and synchronize germination for tomato ( Lycopersicon esculentum Mill. ) seeds. Seed Science and Technology, 1991, 19(3): 537-544. [本文引用:1]
[30] Jamil M, Ashraf M, Rha E S. Alleviation of salt stress using gibberellic acid in Chinese cabbage. Acta Agronomica Hungarica, 2012, 60(4): 345-355. [本文引用:2]
[31] Draganic I, Lekic S. Seed priming with antioxidants improves sunflower seed germination and seedling growth under unfavorable germination conditions. Turkish Journal of Agriculture and Forestry, 2012, 36(4): 421-428. [本文引用:1]
[32] Zhang S, Hu J, Zhang Y, Xie X J, Knapp A. Seed priming with brassinolide improves lucerne ( Medicago sativa L. ) seed germination and seedling growth in relation to physiological changes under salinity stress. Australian Journal of Agricultural Research, 2007, 58(8): 811-815. [本文引用:3]
[33] 潘龙, 谷文英. 硝普钠浸种对紫花苜蓿种子萌发及幼苗生长的影响. 草业科学, 2013, 30(1): 58-62.
Pan L, Gu W Y. Effects of soaking seeds in SNP on seed germination and seedling growth of alfalfa. Pratacultural Science, 2013, 30(1): 58-62. (in Chinese) [本文引用:2]
[34] Gao Y P, Bonham-Smith P C, Gusta L V. The role of peroxiredoxin antioxidant and calmodulin in ABA-primed seeds of Brassica napus exposed to abiotic stresses during germination. Journal of Plant Physiology, 2002, 159(9): 951-958. [本文引用:1]
[35] Eisvand H R, Alizadeh M A, Fekri A. How hormonal priming of aged and nonaged seeds of bromegrass affects seedling physiological characters. Journal of New Seeds, 2010, 11(1): 52-64. [本文引用:2]
[36] da Silva C B, Marcos-Filho J, Jourdan P, Bennett M A. Performance of bell pepper seeds in response to drum priming with addition of 4-pibrassinolide. Hortscience, 2015, 50(6): 873-878. [本文引用:2]
[37] Toklu F. Effects of different priming treatments on seed germination properties, yield components and grain yield of lentil( Lens culinaris Medik. ). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 43(1): 153-158. [本文引用:2]
[38] Shah R A, Sharma A, Wali V K, Jasrotia A, Plathia M. Effect of seed priming on peach, plum and apricot germination and subsequent seedling growth. Indian Journal of Horticulture, 2013, 70(4): 591-594. [本文引用:2]
[39] Tzortzakis N G. Effect of pre-sowing treatment on seed germination and seedling vigour in endive and chicory. Horticultural Science, 2009, 36(3): 117-125. [本文引用:1]
[40] Mahmoudi H, Ben Massoud R, Baatour O, Tarchoune I, Ben Salah I, Nasri N, Abidi W, Kaddour R, Hannoufa A, Lachaal M, Ouerghi Z. Influence of different seed priming methods for improving salt stress tolerance in lettuce plants. Journal of Plant Nutrition, 2012, 35(12): 1910-1922. [本文引用:3]
[41] Rehman H, Iqbal H, Basra S M A, Afzal H, Farooq M, Wakeel A, Wang N. Seed priming improves early seedling vigor, growth and productivity of spring maize. Journal of Integrative Agriculture, 2015, 14(9): 1745-1754. [本文引用:1]
[42] Nimir N E A, Lu S, Zhou G, Guo W, Ma B, Wang Y. Comparative effects of gibberellic acid, kinetin and salicylic acid on emergence, seedling growth and the antioxidant defence system of sweet sorghum ( Sorghum bicolor) under salinity and temperature stresses. Crop and Pasture Science, 2015, 66(2): 145-157. [本文引用:1]
[43] Iqbal M, Ashraf M, Jamil A. Seed enhancement with cytokinins: Changes in growth and grain yield in salt stressed wheat plants. Plant Growth Regulation, 2006, 50(1): 29-39. [本文引用:2]
[44] Iqbal M, Ashraf M. Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environmental and Experimental Botany, 2013, 86: 76-85. [本文引用:2]
[45] Zheng M, Tao Y, Hussain S, Jiang Q, Peng S, Huang J, Cui K, Nie L. Seed priming in dry direct-seeded rice: Consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regulation, 2015: 78(2): 167-178. [本文引用:2]
[46] Khaliq A, Aslam F, Matloob A, Hussain S, Geng M J, Wahid A, Rehmanur H. Seed priming with selenium: Consequences for emergence, seedling growth, and biochemical attributes of rice. Biological Trace Element Research, 2015, 166(2): 1-9. [本文引用:1]
[47] Gill R A, Ali B, Islam F, Farooq M A, Gill M B, Mwamba T M, Zhou W J. Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5-aminolivulinic acid under chromium stress. Plant Physiology and Biochemistry, 2015, 94: 130-143. [本文引用:1]
[48] Eisvand H R, Tavakkol-Afshari R, Sharifzadeh F, Arefi H M, Hejazi S M H. Effects of hormonal priming and drought stress on activity and isozyme profiles of antioxidant enzymes in deteriorated seed of tall wheatgrass ( Agropyron elongatum Host). Seed Science and Technology, 2010, 38(2): 280-297. [本文引用:2]
[49] Li Z, Lu G Y, Zhang X K, Zou C S, Cheng Y, Zheng P Y. Improving drought tolerance of germinating seeds by exogenous application of gibberellic acid (GA3) in rapeseed ( Brassica napus L. ). Seed Science and Technology, 2010, 38(2): 432-440. [本文引用:2]
[50] Benincasa P, Pace R, Quinet M, Lutts S. Effect of salinity and priming on seedling growth in rapeseed ( Brassica napusvaroleifera Del. ). Acta Scientiarum Agronomy, 2013, 35(4): 479-486. [本文引用:1]
[51] Iqbal S, Bano A, Ilyas N. Abscisic acid (ABA) seed soaking induced changes in physiology of two wheat cultivars under water stress. Pakistan Journal of Botany, 2012, 44: 51-56. [本文引用:1]
[52] Farooq M, Wahid A, Basra S M A, Islamud D. Improving water relations and gas exchange with brassinosteroids in rice under drought stress. Journal of Agronomy and Crop Science, 2009, 195(4): 262-269. [本文引用:2]
[53] Korkmaz A, Korkmaz Y. Promotion by 5-aminolevulenic acid of pepper seed germination and seedling emergence under low-temperature stress. Scientia Horticulturae, 2009, 119(2): 98-102. [本文引用:1]
[54] Jamil M, Ashraf M, Rehman S, Rha E S. Cell Membrane stability (CMS): Asimple technique to check salt stress alleviation through seed priming with GA3 in canola. In: Ashraf M, Ozturk M, Athar H R. (eds). Salinity and Water Stress. Berlin: Springer Netherland s, 2009: 117-127. [本文引用:1]
[55] Khan M B, Gurchani M A, Hussain M, Freed S, Mahmood K. Wheat seed enhancement by vitamin and hormonal priming. Pakistan Journal of Botany, 2011, 43(3): 1495-1499. [本文引用:3]
[56] Iqbal M, Ashraf M. Alleviation of salinity-induced perturbations in ionic and hormonal concentrations in spring wheat through seed preconditioning in synthetic auxins. Acta Physiologiae Plantarum, 2013, 35(4): 1093-1112. [本文引用:2]
[57] Bano A, Ullah F, Nosheen A. Role of abscisic acid and drought stress on the activities of antioxidant enzymes in wheat. Plant Soil and Environment, 2012, 58(4): 181-185. [本文引用:1]
[58] Sharma S N, Maheshwari A. Expression patterns of DNA repair genes associated with priming small and large chickpea ( Cicer arietinum) seeds. Seed Science and Technology, 2015, 43(2): 250-261. [本文引用:1]
[59] Sivritepe H O, Eris A. The effects of post-storage priming treatments on viability and repair of genetic damage in pea seeds. In: Herregods M (eds). Proceedings of the XXV International Horticultural Congress. Brussels: International Society of Horticultural Science, 2000: 143-149. [本文引用:1]
[60] Sivritepe H O, Dourado A M. The effect of priming treatments on the viability and accumulation of chromosomal damage in aged pea-seeds. Annals of Botany, 1995, 75(2): 165-171. [本文引用:1]
[61] Gao Y P, Young L, Bonham-Smith P, Gusta L V. Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions. Plant Molecular Biology, 2000, 40(4): 635-644. [本文引用:2]
[62] 朱再标, 卢魏魏, 郭巧生, 曹亚悦, 冯杉, 宁梓君. 引发条件对干旱胁迫下白花蛇舌草种子萌发及幼苗生长的影响. 中国中药杂志, 2014, 39(8): 1391-1395.
Zhu Z B, Lu W W, Guo Q S, Cao Y Y, Feng S, Ning Z J. Impact of priming on seed germination and seedling growth of Oldenlan diadiffusa under drought stress. Chinese Journal of Chinese Medica, 2014, 39(8): 1391-1395. (in Chinese) [本文引用:1]
[63] Wagner M, Pywell R F, Knopp T, Bullock J M, Heard M S. The germination niches of grassland species targeted for restoration: Effects of seed pre-treatments. Seed Science Research, 2011, 21(2): 117-131. [本文引用:1]
[64] 王彦荣. 种子引发的研究现状. 草业学报, 2004, 13(4): 7-12.
Wang Y R. Current status of seed priming research. Acta Prataculturae Sinica, 2004, 13(4): 7-12. (in Chinese) [本文引用:1]
[65] Srivastava A K, Lokhand e V H, Patade V Y, Suprasanna P, Sjahril R, D’Souza S F. Comparative evaluation of hydro-, chemo-, and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard ( Brassica juncea L. ). Acta Physiologiae Plantarum, 2010, 32(6): 1135-1144. [本文引用:1]
[66] Bhargava B, Gupta Y C, Dhiman S R, Sharma P. Effect of seed priming on germination, growth and flowering of snapdragon( Antirrhinum majus L. ). National Academy Science Letters-India, 2015, 38(1): 81-85. [本文引用:1]
[67] Rahmatullah, Murtaza G, Ghafoor A, Saifullah. Improving the performance of wheat ( Triticum aestivum L. ) by seed priming in salt-affected soils irrigated with saline-sodic water. Journal of Animal and Plant Sciences, 2012, 22(4): 1055-1059. [本文引用:1]
[68] Hee L C, Song J H, Wang J K, Chang Y. Several factors affecting on seed germination of Dracocephalum argunense Fischer ex Link. Korean Journal of Plant Reources, 2009, 22(3): 236-241. [本文引用:1]
[69] Sousa Lira J M, Lara T S, Rodrigues A C, Dousseau S, Magalhaes M M, deAlvarenga A A. Cross-tolerance mechanism induction in melon seeds by priming prior drying. Ciencia E Agrotecnologia, 2015, 39(2): 131-137. [本文引用:1]
[70] 刘桂霞, 苗玉华. 回干处理对2种野生禾草种子萌发的影响. 安徽农业科学, 2008, 36(30): 13087-13089.
Liu G X, Miao Y H. Effect of dehydration treatment on seed germination of 2 kinds of wild gramineousforage. Journal of Anhui Agricultual Science, 2008, 36(30): 13087-13089. (in Chinese) [本文引用:1]
[71] Wang W Q, Liu S J, Song S Q, Moller I M. Proteomics of seed development, desiccation tolerance, germination and vigor. Plant Physiology and Biochemistry, 2015, 86: 1-15. [本文引用:1]
[72] Kubala S, Garnczarska M, Wojtyla L, Clippe A, Kosmala A, Zmienko A, Lutts S, Quinet M. Deciphering priming-induced improvement of rapeseed ( Brassica napus L. ) germination through an integrated transcriptomic and proteomic approach. Plant Science, 2015, 231: 94-113. [本文引用:1]
[73] Galland M, Huguet R, Arc E, Cueff G, Job D, Rajjou L. Dynamic proteomics emphasizes the importance of selective mRNA translation and protein turnover during arabidopsis seed germination. Molecular and Cellular Proteomics, 2014, 13(1): 252-268. [本文引用:1]
[74] Fercha A, Capriotti A L, Caruso G, Cavaliere C, Gherroucha H, Samperi R, Stampachiacchiere S, Lagana A. Gel-free proteomics reveal potential biomarkers of priming-induced salt tolerance in durum wheat. Journal of Proteomics, 2013, 91: 486-499. [本文引用:1]
[75] Fercha A, Capriotti A L, Caruso G, Caualiere C, Samperi R, Stampachiacchiere S, Lagana A. Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress. Journal of Proteomics, 2014, 108: 238-257. [本文引用:1]
[76] Amooaghaie R, Valivand M. The combined effect of gibberellic acid and long timeosmopriming on seed germination and subsequent seedling growth of Klussia odoratissima Mozaff. African Journal of Biotechnology, 2011, 10(66): 14873-14880. [本文引用:1]